University of New Mexico **CONFIDENCE INTERVALS (Fall 2016)** PH 538: Public Health Biostatistical Methods I [Instructor: Dr. Fares Qeadan]

1.1 C.I. AROUND ONE POPULATION PROPORTION (p) [using sample statistics]:

Example: In a 1999-2000 longitudinal study of youth baseball, researchers found that 77 of 248 young pitchers complained of elbow pain after pitching. What is the 90% C.I. for the true population proportion of young pitchers with elbow pain?

Solution by hand: Since the CL is 90% then $Z_{\alpha/2} = di$ invnormal $((1 - 0.90)/2) \approx -1.645$. Thus,

$$\hat{p} \pm Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 0.3105 \pm 1.645 \sqrt{\frac{0.3105(1-0.3105)}{248}} = (0.2621676, 0.3588324) \approx (0.2622, 0.3588).$$

We are 90% confident that the true population proportion of young pitchers with elbow pain is between 26.22% and 35.88%.

Solution by STATA:

			248	.3104839	9.029	381	.2621565	.3588112
	Variable		Obs	Proportion	n Std.	Err.	— Binomial [90% Conf.	Wald — Interval]
•	cii proporti	lons 248	77,	level(90) v	wald			

1.2 C.I. AROUND ONE POPULATION PROPORTION (p) [using sample data]:

Example: Using the Diabetes dataset from Lab1, what is the 95% confidence interval around the true population proportion of diabetes?

Solution by STATA:

	diab	390	.1538462	.0182699	.1180378	.1896545				
	Variable	Obs	Proportion	Std. Err.	— Binomial [95% Conf.	l Wald —— Interval]				
•	. ci proportions diab, level(95) wald									
•	. use "C:\Users\Fares\Documents\PH538\Fall2016\handouts\diabetesfall16.dta"									

We are 90% confident that the true population proportion of diabetes is between 11.80% and 18.96%.

2.1 C.I. AROUND ONE POPULATION MEAN (μ) when σ is unknown [using sample statistics]: **Example:** A study from the US of 65 professional football players found that the weight of football players is roughly normally distributed with a sample mean of 200 pounds and a standard deviation of 25 pounds. What is the 99% C.I. for the true population mean weight of US football players?

Solution by hand: Since the CL is 99% then $t_{n-1,\alpha/2} = di \quad invt(64, (1-0.99)/2) \approx -2.655$. Thus,

 $\bar{x} \pm t_{n-1,\alpha/2} \left(\frac{s_x}{\sqrt{n}}\right) = 200 \pm 2.655 \left(\frac{25}{\sqrt{65}}\right) = (191.7672, 208.2328) \approx (191.77, 208.23).$ We are 99% confident that the true population mean weight of US professional football players is between 191.77 and 208.23 pounds.

$\mathbf{2}$

Solution by STATA:

	65	200	3.100868	191.7676	208.2324
Variable	Obs	Mean	Std. Err.	[99% Conf.	Interval]
. cii means 6	5 200 25, leve	1(99)			

2.2 C.I. AROUND ONE POPULATION MEAN (μ) when σ is unknown [using sample data]:

Example: Using the Diabetes dataset from Lab1, what is the 95% confidence interval around the true mean age of subjects in the population of African Americans in Virginia? **Solution by STATA:**

. use "C:\Users\Fares\Documents\PH538\Fall2016\handouts\diabetesfall16.dta"									
. ci means age, level(95)									
Variable	Obs	Mean	Std. Err.	[95% Conf.	Interval]				
age	403	46.85112	.8125752	45.25369	48.44854				

We are 95% confident that the true mean age of subjects in the population of African Americans in Virginia is between 45.25 and 48.45 pounds.

2.3 C.I. AROUND ONE POPULATION MEAN (μ) when σ is unknown by stratum (group) [using sample data]:

Example: Using the Diabetes dataset from Lab1, what is the 95% confidence interval around the true mean age of Female subjects in the population of African Americans in Virginia? **Solution by STATA:**

<u>Method 1:</u> we could use the "if" statement:

. use "C:\Users\Fares\Documents\PH538\Fall2016\handouts\diabetesfall16.dta" . ci means age if gender=="female", level(95) Variable Obs Mean Std. Err. [95% Conf. Interval] age 234 45.83333 1.085489 43.69471 47.97196

We are 95% confident that the true mean age of Females in the population of African Americans in Virginia is between 43.69 and 47.97 pounds.

<u>Method 2</u>: we could use the "by" statement after sorting the data by the stratum/group:

. use "C:\Users\Fares\Documents\PH538\Fall2016\handouts\diabetesfall16.dta"									
. sort gender									
. by gender: ci means age, level(95)									
-> gender = female									
Variable	Obs	Mean	Std. Err.	[95% Conf. Interval]					
age	234	45.83333	1.085489	43.69471 47.97196					
-> gender = male									
Variable	Obs	Mean	Std. Err.	[95% Conf. Interval]					
age	169	48.26036	1.21841	45.85499 50.66572					

3.1 C.I. AROUND ONE POPULATION MEAN (μ) when σ is known [using sample statistics]:

Example: A study from the US of 65 professional football players found that the weight of football players is roughly normally distributed with a sample mean of 200 pounds. Assume that the population standard deviation for the weights is known and equals to 25 pounds. What is the 99% C.I. for the true population mean weight of US football players?

Solution by hand: Since the CL is 99% then $Z_{\alpha/2} = di$ invnormal $((1 - 0.99)/2) \approx 2.576$. Thus, $\bar{x} \pm Z_{\alpha/2} \left(\frac{\sigma_x}{\sqrt{n}}\right) = 200 \pm 2.576 \left(\frac{25}{\sqrt{65}}\right) = (192.0122, 207.9878) \approx (192.01, 207.99).$

Solution by STATA:

. ztesti 65 200 25 0, level(99)

One-sample	e z test					
	Obs	Mean	Std. Err.	Std. Dev.	[99% Conf.	Interval]
x	65	200	3.100868	25	192.0127	207.9873
mean = Ho: mean =	= mean(x) = 0				Z	= 64.4981
Ha: mean < 0 Pr(Z < Z) = 1.0000		Pr(Ha: mean != Z > z) = (0 0.0000	Ha: m Pr(Z > z	ean > 0) = 0.0000

We are 99% confident that the true population mean weight of US professional football players is between 192.01 and 207.99 pounds.