

1. 7	'he Model
<i>y_i</i> =	$\alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_k x_{ik} + \varepsilon_i$
whe	ere
	α , β_1 , β_2 ,, β_k are unknown parameters,
	$x_{i1}, x_{i2},, x_{ik}$ are known variables,
ε _i me	are <mark> independently</mark> distributed and has a <mark>normal</mark> distribution wit an <mark>0</mark> and standard deviation <mark>o</mark> , and
y_i	is the value of the response variable for the i^{th} patient.
We the are <mark>de</mark> j	usually assume that the patient's response y is causally related variables $x_{i1}, x_{i2},, x_{ik}$ through the model. These latter variab called covariates or explanatory variables ; y is called condent or response variable .

b) Prediction

To predict the value of *y* given $x_1, x_2, ..., x_k$

3. Estimating Parameters

Let $\hat{y}_i = a + b_1 x_{i1} + b_2 x_{i2} + \dots + b_k x_{ik}$ be the estimate of y_i given $x_{i1}, x_{i2}, \dots, x_{ik}$.

We estimate $a, b_1, ..., b_k$ by minimizing $\sum (y - \hat{y})^2$

4. Expected Response in the Multiple Model

The expected value of both y_i and \hat{y}_i given her covariates is

 $E[y_{i} | \mathbf{x}_{i}] = E[\hat{y}_{i} | \mathbf{x}_{i}] = \alpha + \beta_{1} x_{i1} + \beta_{2} x_{i2} + \dots + \beta_{k} x_{ik}.$

We estimate the expected value of y_i among subjects whose covariate values are identical to those of the *i*th patient by \hat{y}_i . The equation $\hat{y}_i = a + b_1 x_{i1} + b_2 x_{i2} + ... + b_k x_{ik}$.

may be rewritten

$$\hat{y}_i = \overline{y}_i + b_1(x_{i1} - \overline{x}_1) + b_2(x_{i2} - \overline{x}_2) + \dots + b_k(x_{ik} - \overline{x}_k).$$

$$\{2.1\}$$

Thus, $\hat{y}_i = \overline{y}$ when $x_{i1} = \overline{x}_1$, $x_{i2} = \overline{x}_2$,..., and $x_{ik} = \overline{x}_k$.

5. Framingham Example: SBP, Age, BMI, Sex and Serum Cholesterol

a) Preliminary univariate analysis

The Framingham data set contains data on 4,699 patients. On each patient we have the baseline values of the following variables:

- *sbp* Systolic blood pressure in mm Hg.
- age Age in years
- scl Serum cholesterol in mg/100ml
- *bmi* Body mass index in kg/m²
- sex $\int 1 = Men$
 - 2 = Women

Follow-up information on coronary heart disease is also provided.

This data set is a subset of the 40 year data from the Framingham Heart Study that was conducted by the National Heart Lung and Blood Institute. Recruitment of patients started in 1948. At that time of the baseline exams there were no effective treatment for hypertension. We first perform simple linear regressions of SBP on age, BMI, serum cholesterol. . * FramSBPbmiMulti.log . * . * Framingham data set: Multiple regression analysis of the effect of bmi on . * sbp (Levy 1999). . * . use "c:\WDDtext\2.20.Framingham.dta", clear . regress sbp bmi

Source	SS	df	MS		Number of obs	= 4690
Model Residual	262347.407 2176529.37	1 2623 4688 464.	47.407 276742		Prob > F R-squared	= 0.0000 = 0.1076
Total	2438876.78	4689 520.	127271		Root MSE	= 21.547
sbp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
bmi	1.82675	.0768474	23.771	0.000	1.676093	1.977407
cone	85 93592	1,9947	43,082	0.000	82,02537	89.84647

Source + Model Residual	SS 380213.315 2062231.59	df 1 38021 4697 439.0	MS 3.315 052924		Number of obs F(1, 4697) Prob > F R-squared	= 4699 = 865.99 = 0.0000 = 0.1557
Total	2442444.90	4698 519.8	90358		Adj R-squared Root MSE	= 0.1555 = 20.954
sbp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age _cons	<mark>1.057829</mark> 84.06298	.0359468 1.68302	29.428 49.948	0.000 0.000	.9873561 80.76347	1.128301 87.36249
	shn age sv	mbol(Oh)		Processo		///
. scatter > 1	fit sbp age,	ytitle(Systc	olic Blood	Fressure	,	
. scatter > 1	fit sbp age,	ytitle(Systc	olic Blood	Pressure.	,	

Source	SS	df	M	5		Number of obs	= 4666 = 231 52
Model Residual	114616.314 2308993.33	1 4664	114616 495.00	.314 6718		Prob > F R-squared	= 0.0000 = 0.0473
Total	2423609.64	4665	519.5	3047		Root MSE	= 22.25
sbp	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
scl _cons	<mark>.1112811</mark> 107.378	.0073 1.701	136 114	15.216 63.122	0.000 0.000	.0969431 104.043	.1256192 110.713
. scatte >	r sbp scl, s lfit sbp scl,	ymbol(ytitl	<mark>Oh)</mark> e(Systo]	lic Blood	Pressure)	I.	///

The univariate regressions show that sbp is related to age and scl as well as bmi. Although the statistical significance of the slope coefficients is overwhelming, the R-squared statistics are low. Hence, each of these risk factors individually only explain a modest proportion of the total variability in systolic blood pressure.

We would like better understanding of these relationships.

Note that the importance of a parameter depends not only on its magnitude but also on the range of the corresponding covariate. For example, the *scl* coefficient is only 0.11 as compared to 1.83 and 1.06 for *bmi* and *age*. However, the range of *scl* values is from 115 to 568 as compared to 16.2 - 57.6 for *bmi* and 30 - 68 for *age*. The large *scl* range increases the variation in *sbp* that is associated with *scl*.

A sunflower is a number of short line segments radiating from a central point.

In a light sunflower each petal represents one observation.

In a dark sunflower, each petal represents k observations, where k is specified by the user.

The *x*-*y* plane is divided into a lattice of hexagonal bins.

The user can control the bin width in the units of the *x*-axis and thresholds l and d that determine when light and dark sunflowers are drawn.

Whenever there are less than l data points in a bin the individual data points are depicted at their exact location.

When there are at least l but fewer than d data points in a bin they are depicted by a light sunflower.

When there are at least d observations in a bin they are depicted by a dark sunflower.

For more details see the Stata v8.2 online documentation on the sunflower command.

* Energoune 1.			
. · FramSuntiowe	r.lo]	
* Framingham d	ata :	set: Exploratory and	alvsis of sbp and bmi
*		···· / ···· / ···· / ····	
. set more on			
. use "c:\WDDtext	\2.20).Framingham.dta", o	clear
* Craphica > Cm	ooth	ing > Dopoity di	istribution surflower plat
sunflower shn h	mi	ing > Density-ui	
Bin width	=	1.15	{2}
Bin height	=	11.8892	[3]
			100
Bin aspect ratio	=	8.95333	{ 0 }
Bin aspect ratio Max obs in a bin	=	8.95333 115	{°}
Bin aspect ratio Max obs in a bin Light	= = =	8.95333 115 3	{3}
Bin aspect ratio Max obs in a bin Light Dark	= = =	8.95333 115 3 13	{4} {5}
Bin aspect ratio Max obs in a bin Light Dark X-center	= = = =	8.95333 115 3 13 25.2	{4} {5}
Bin aspect ratio Max obs in a bin Light Dark X-center Y-center	= = = =	8.95333 115 3 13 25.2 130	{4} {5}

{1}	Create a sunflower plot of <i>sbp</i> by <i>bmi</i> . Let the program choose all default values. The resulting graph is given in the next slide.
{2}	The default bin width is given in units of x . It is chosen to provide 40 bins across the graph.
{3}	The default bin height is given in units of <i>y</i> . It is chosen to make the bins regular hexagons on the graph.
{4}	The default minimum number of observations in a light sunflower bin is 3
{5}	The default minimum number of observations in a dark sunflower bin is 13
{6}	The default petal weight for dark sunflowers is chosen so that the maximum number of petals in a dark sunflower is 14.

actual obs.	estimated obs.	No. of flowers	No. of petals	petal weight	flower type
	171				none
60	60	20	3	1	light
44	44	11	4	1	light
55	55	11	5	1	light
48	48	8	6	1	light
63	63	9	7	1	light
40	40	5	8	1	light
63	63	7	9	1	light
40	40	4	10	1	light
33	33	3	11	1	light
48	48	4	12	1	light
52	36	4	1	9	dark
381	378	21	2	9	dark
285	297	11	3	9	dark
497	504	14	4	9	dark
322	315	7	5	9	dark
214	216	4	6	9	dark
314	315	5	7	9	dark
296	288	4	8	9	dark
410	405	5	9	9	dark
269	270	3	10	9	dark
197	198	2	11	9	dark
445	432	4	12	9	dark
343	351	3	13	9	dark
4600	4670				


```
. more
. * Graphics > Smoothing ... > Density-distribution sunflower plot
. sunflower dbp bmi, binwidth(0.85)
                                                                /// {1}
          >
                                                                111
>
                                                                111
                                                                /// {2}
>
                                                                /// {3}
>
>
Bin width = .85
Bin height = 3.66924
Bin aspect ratio = 3.73842
Max obs in a bin = 59
Light = 3
                           13
Dark =
X-center =
Y-center =
                         25.2
                          80
Petal weight
                 =
                             5
```

{1}	sunflower accepts most standard graph options as well as special options that can control almost all aspects of the plot. Here binwidth specifies the bin width to be 0.85 kg/m^2 .
{2}	The <i>position</i> sub-option of the legend option specifies that the legend will be located at 5 o'clock. $ring(0)$ causes the legend to be drawn within the graph region. $cols(1)$ requires that the legend
{3}	keys be in a single column. The <i>addplot</i> option allows us to overlay other graphs on top of the
(-)	sunflower plot. Here we draw the linear regression and lowess regression curves.

Y variable: X varia dbp Imi	able.
Do not graph	2
Do not show table	sunflower - Density-distribution sunflower plots
Marker properties	Main if/in Weights Bins / Petals Add plots Yaxis Xaxis Titles Legend Overall By
	Bins
	85 Bin properties
	3 - Minimum # of observations for light bins
	13 - Minimum # of observations for dark bins
	Reference bin
2 8 6	X value: Y value:
	Petals
	Petal weight: Length (%):
	100 - Petal properties
	Suppress single petals
	C DK Cancel Submit

Sunflower - Density-distribution sunflower plots X Main ii/n Weights Bins / Petals Add plots Y axis X axis Titles Legend Overall By Sunflower - Density-distribution sunflower plots X Main ii/n Weights Bins / Petals Add plots Y axis X axis Titles Legend Overall By Legend behavior C Default C Show legend C Hide legend	
Override default keys Specify order of keys and optionally change labels: Image: Comparization And appearance properties Organization / Appearance Placement Image: Comparization / Appearance Placement Image: Comparization / Appearance Position Stack symbols and text Default Image: Comparization Position Stack symbols and text Default Image: Comparization Position Image: Comparization Place legend inside plot region Place legend in an area sparning the plot region Image: Column gap: Image: I	

Y variable:	x veriable:
Do not show table Mai Marker properties Plk	Initiower - Density-distribution sumilower plots X i it/n Weights Bins / Petals Add plots t definitions:
OD B Po	Plot 1 P
Q	Plot type: [linear prediction plot] Y variable: X variable: dbp ▼→ bmi ▼ Weights Add a second y axis on right Options
	Accept Cancel Submit

graph matrix - Matrix graphs Main <i>ti/n</i> titles Overall By Variables: Step brni age scl Lower triangular half only Diagonal labels: (optional) Marker properties Marker weights	Scale text: 1 Properties
Marker properties Main Advanced Marker properties Symbol: Hollow cicle Color: Default Color: Default Size: Add labels to markers Variable: Label postor: Default Label postor: Default Label gap: Label gap:	K Cancel Submit
Cancel Submit	OK Cancel Submit

The first model that comes to mind is

 $E[sbp_i | \mathbf{x}_i] = \alpha + \beta_1 \times bmi_i + \beta_2 \times age_i + \beta_3 \times scl_i + \beta_4 \times sex_i.$

A potential weakness of this model is that it implies that the effects of the covariates on sbp_i are additive. To understand what this means, suppose we hold *age* and *scl* constant and look at *bmi* and *sex*. Then the model becomes

 $sbp = constant + bmi \times \beta_1 + \beta_4$ for men, and

 $sbp = constant + bmi \mathbf{x} \beta_1 + 2\beta_4$ for women.

The β_4 parameter allows men and women with the same *bmi* to have different expected *sbps*.

However, the slope of the *sbp-bmi* relationship for both men and women is β_1 .

Source	SS	df		MS		Number of obs F(7 4650)	=	4658 217 41	
Model	596743.008	7	85249	.0011		Prob > F	=	0.0000	
Residual	1823322.50	4650	392.1	12365		R-squared	=	0.2466	{1]
Total	2420065.50	4657	519.60	61908		Adj R-squared Root MSE	=	0.2454	
sbp	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]	
+ bmi	1.260872	.130	925	9.630	0.000	1.004197	1	.517547	
age	.5170311	.0518	617	9.969	0.000	.4153576		6187047	
scl	.0376262	.0105	242	3.575	0.000	.0169938		0582586	
woman	-31.06614	5.29	534	-5.867	0.000	-41.44751	-2	0.68476	
bmiwoman	.141898	.1582	655	0.897	0.370	1683775		4521735	
agewoman	.6658219	.0734	669	9.063	0.000	.5217919		8098519	
sclwoman	0078668	.014	045	-0.560	0.575	0354017	12	0196682	{2
cons i	67.22324	4.427	304	15.184	0.000	58.54362	- 1	5.90285	

•••	A-squared equals the square of the correlation coefficient between $\sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} 1$
	y_i and y_i . It still equals $\sum (y_i - y) / \sum (y_i - y)$
	and hence can be interpreted as the proportion of the variation in y explained by the model .
	In the simple regression of sbp and bmi we had R-squared = 0.11 . Thus, this multiple regression model explains more than twice the variation in sbp than did the simple model.
{2}	The serum cholesterol-woman interaction coefficient, -0.0079, is
	five times smaller than the <i>scl</i> coefficient, and is not statistically significant. Lets drop it from the model and see what happens.

Residual 1 Total 2	823445.51 420065.50	4651	392.0	54507		R-squared	= 0.2465
Total 2	420065.50					And D Annual And	- 0.0450
		4657	519.6	61908		Adj R-squared Root MSE	= 0.2456 = 19.80
sbp +	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
bmi	1.269339	.1300)398	9.761	0.000	1.014399	1.524278
age	.5182974	.0518	3086	10.004	0.000	.416728	.6198668
scl	.0332092	.0069	9687	4.765	0.000	.0195472	.0468712
woman -	32.18538	4.903	3474	-6.564	0.000	-41.79851	-22.57224
omiwoman	.1323904	.157	′341	0.841	0.400	1760726	.4408534
agewoman	.656538	.0715	675	9.174	0.000	.5162319	.7968442
_cons	67.94892	4.233	3177	16.052	0.000	59.64988	76.24795

Source	SS	df	MS		Number of F(5, 46	obs = 52) =	4658 304,23
Model Model	596342.421 1823723.08	5 4652	119268.484 392.029897		Prob > F R-squared	=	0.0000
Total	2420065.50	4657	519.661908		Adj R-squa Root MSE	ared = =	0.2456 19.80
sbp	Coef.	Std. E	rr. 1	: P> t	[95% Cc	onf. In	terval]
bmi	1.359621	.07346	63 18.5	507 0.000	1.21559	92	1.50365
age	.5173521	.05179	48 9.9	988 0.000	.415809	. 80	6188944
scl	.0327898	.00695	06 4.7	718 0.000	.019163	. 32	0464163
woman	-29.14655	3.3166	62 -8.7	788 0.000	-35.6487	78 - 22	2.64432
gewoman	.6646316	.07091	59 9.3	372 0.000	.525602	. 9	8036603
cons	65.74423	3.3247	12 19.7	74 0.000	59,2262	2 72	2.26224

When we did simple linear regression of *sbp* against *bmi* for men and women we obtained slope estimates of 1.38 and 2.05 for men and women, respectively. Our multivariate model gives a single slope estimate of 1.36 for both sexes, but finds that the effect of increasing age on *sbp* is twice as large in women than men. I.e. For women this slope is 0.52 + 0.66 = 1.18 while for men it is 0.52. How reasonable is our model? One way to increase our intuitive understanding of the model is to plot separate simple linear regressions of *sbp* against *bmi* in groups of patients who are homogeneous with respect to the other variables in the model. The following graphic is restricted to patients with a serum cholesterol of ≤ 225 and subdivides patients by age and sex. In these graphs, two versions of the graph are given drawn to different scales. The second only shows the regression lines.

The **blue** lines have the slope from our **multiple regression model** of 1.36 The **red** lines have slopes 1.38 for men and 2.05 for women (the slopes of the **simple regressions** in men and women respectively. The **green** lines have the slope of the **simple regression** for patients with the indicated **age** and gender. The **yellow** lines mark the **mean** *slop* and *lowe* for the indicated age-gender group.

For **men** the adjusted and unadjusted **slopes** are almost **identical** and are very close to the age restricted slope for all ages except 60 - 70.

However, for **women** the adjusted and unadjusted **slopes differ** appreciably. The adjusted slope is very close to the age restricted slopes in every case except age 60 - 70, where the adjusted slope is closed the age restricted slope than is the unadjusted slope.

Thus, our model is a marked improvement over the simple model. The **single** *sbp-bmi* adjusted **slope** estimate appears **reasonable** except, for the oldest subjects.

Note that the mean *sbp* increases with age for both sexes, but increases more **rapidly** in **women** than in **men**.

The mean *bmi* does not vary appreciably with age in men but does increase with increasing age in women.

Thus **age** and **gender confound** the effect of *bmi* on *sbp*. Do you think that the age-gender interaction of *sbp* is real or is this driven by some other unknown confounding variable?

10. Automatic Methods of Model Selection

Analyses loose power when we include variables in the model that are neither confounders nor variables of interest. When a large number of potential confounders are available it can be useful to use an automatic model selection program.

a) Forward Selection

- i) Fit all simple linear models of *y* against each separate *x* variable. Select the variable with the greatest significance.
- ii) Fit all possible models with the variable(s) selected in the preceding step(s) and one other. Select as the next variable the one with the greatest significance among these models.
- iii) repeat step ii) to add additional variables, one variable at a time. Continue this process until none of the remaining variables have a significance level less than some threshold.

We next illustrate how this is done in Stata.

FramSBPbmiMulti.log continues as follows.

. * . * Fit a moo . * interact: . * agewoman . * . * statistics . stepwise, po	del of sbp ag ion terms. Th , and sclwoma s > other > s e(.1): regres	yainst bmi ag ne variables n have been stepwise est s sbp bmi ag	ge scl a woman, l previous imation ge scl wo	nd sex wi omiwoman, sly defir oman bmiv	ith ied. voman agewoman	sclwoman
	begi	n with empty	v model			0.1
p = 0.0000 < p = 0.0000 < p = 0.0000 < p = 0.0001 < p = 0.0000 <	0.1000 addi 0.1000 addi 0.1000 addi 0.1000 addi 0.1000 addi	ng age .ng bmi .ng scl .ng agewoma .ng woman	an			{2} {3}
Source	SS	df	MS		Number of obs	= 4658
Model Residual Total	596342.421 1823723.08 2420065.5	5 11926 4652 <mark>392.0</mark> 4657 519.6	58.484 9 <mark>29897</mark> 961908		F(5, 4652) Prob > F R-squared Adj R-squared Root MSE	= 304.23 = 0.0000 = 0.2464 = 0.2456 = 19.8
sbp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	.5173521	.0517948	9.99	0.000	.4158098	.6188944
bmi	1.359621	.0734663	18.51	0.000	1.215592	1.50365
scl	.0327898	.0069506	4.72	0.000	.0191632	.0464163
agewoman	.6646316	.0709159	9.37	0.000	.5256029	.8036603
woman	-29.14655	3.316662	-8.79	0.000	-35.64878	-22.64432
_cons	65.74423	3.324712	19.77	0.000	59.22622	72.26224

2: Multiple Linear Regression

Regression terms:	Command:			
Term 1 (required)	regress	•		
Dependent variable:	💷 stepwise - Stepwi	se estimation	_ 🗆 🗙	
sbp	Model Model 2 by/if/in We	ights Reporting		
Term 1 variables to be inc	Regression terms:	Command		
bmi	Term 2	▼ regress		
Selection criterion	, Dependent variable:	_		
Significance level for I	sbp 💌		•	
	Term 2 variables to be include	d or excluded together		•
Significance level for	age	a or excluded togen to.		
0.1	Selection criterion	stepwise - Stepwise	se estimation	
	Significance level for remo	Model Model 2 by/if/in Wei	ghts Reporting	
0 B 🖻		Regression terms:	Command:	
	Significance level for addi	tion to	▼ regress	
	0.1	Dependent variable:		
		sclwoman 💌		
		Term 7 variables to be include	d or excluded together:	
	•	C Selection criterion		
		Significance level for remo	val from the model:	
	•			
		 Significance level for addit 	ion to the model:	
		0.1		

The most significant new term in these models is *bmi*, which is selected. This process is continued until at the end of step 5 we have the model

 $sbp = \beta_1 + age \times \beta_2 + bmi \times \beta_3 + scl \times \beta_4 + agewoman \times \beta_5 + woman \times \beta_6$

In step 6 we consider the models

 $sbp = \beta_1 + age \times \beta_2 + bmi \times \beta_3 + scl \times \beta_4 + agewoman \times \beta_5 + woman \times \beta_6 + bmiwoman \times \beta_7$

and

 $\begin{aligned} sbp = \beta_{1} + age \times \beta_{2} + bmi \times \beta_{3} + scl \times \beta_{4} + \\ agewoman \times \beta_{5} + woman \times \beta_{6} + sclwoman \times \beta_{7} \end{aligned}$

However, neither of the *P* values for the β_7 parameter estimates in these models are < 0.1. Therefore, neither of these terms are added to the model.

* Fit a mod * interact: * agewoman * * statistics stepwise, pe	del of sbp ag ion terms. Th , and sclwoma s > other > s e(.1): regres	gainst bmi a ne variables an have been stepwise est ss sbp bmi a	ge scl a woman, previou imation ge scl w	nd sex w bmiwomar sly defi oman bmi	vith 1, Lned. Lwoman agewoman	sclwoman
p = 0.0000 < p = 0.0000 < p = 0.0000 < p = 0.0001 < p = 0.0000 <	beg: 0.1000 addi 0.1000 addi 0.1000 addi 0.1000 addi 0.1000 addi	in with empt ing age ing bmi ing scl ing agewom ing woman	y model an			
Source Model Residual	SS 596342.421 1823723.08	df 5 1192 4652 392.	MS 68.484 029897		Number of obs F(5, 4652) Prob > F R-squared	= 4658 = 304.23 = 0.0000 = 0.2464
Total	2420065.5	4657 519.	661908		Adj R-squared Root MSE	= 0.2456 = 19.8
sbp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age bmi scl	.5173521 1.359621 .0327898	.0517948 .0734663 .0069506	9.99 18.51 4.72	0.000	.4158098 1.215592 .0191632	.6188944 1.50365 .0464163
agewoman woman _cons	.6646316 -29.14655 65.74423	.0709159 3.316662 3.324712	9.37 -8.79 19.77	0.000 0.000 0.000	.5256029 -35.64878 59.22622	.8036603 -22.64432 72.26224

b) Backward Selection

This method is similar to the forward method except that we start with all the variables and eliminate the variable with the least significance. The data is refit with the remaining variables and the process is repeated until all remaining variables have a significance level below some threshold.

The Stata command to use backward selection for our *sbp* example is

Here pr(.1) means that the program will consider variables for removal from the model if their associated P value is ≥ 0.1 .

If you run this command in this example you will get the same answer as with the forward selection, which is reassuring. In general there is no guarantee that this will happen.

c) Stepwise Selection

This method is like the forward method except that at each step, previously selected variables whose significance has dropped below some threshold are dropped from the model.

Suppose:

 x_1 is the best single predictor of y

 x_2 and x_3 are chosen next and together predict y better than x_1

Then it makes sense to keep x_2 and x_3 and drop x_1 from the model.

In the Stata ${\it stepwise}$ command this is done with the options -

,forward pe(.1) pr(.2)

which would consider new variables for selection with P < 0.1 and previously selected variables for removal with $P \ge 0.2$.

11. Pros and cons of automated model selection i) Automatic selection methods are fast and easy to use. ii) They are best used when we have a small number of variables of primary interest and wish to explore the effects of potential confounding variables on our models. They can be misleading when used for exploratory analyses iii) in which the primary variables of interest are unknown and the number of potential covariates is large. In this case these methods can exaggerate the importance of a small number of variables due to multiple comparisons artifacts. iv) It is a good idea to use more than one method to see if you come up with the same model. v) Fitting models by hand may sometimes be worth the effort.

2: Multiple Linear Regression

b)	The residual for the i^{th} patient is $e_i = y_i - \hat{y}_i$	
b)		
0)	Estimating the variance σ^2	
	We estimate σ^2 by s ² = $\Sigma(y_i - \hat{y}_i)^2 / (n - k - 1)$	{2.
which is d Stata it is number of	enoted Mean Square for Error in most computer program s the term in the <i>Residual</i> row and the <i>MS</i> column. k i covariates in the model.	s. In s the

+	SS	d†	N	IS 		Number of obs	-	4658
Model	596342.421	5	119268	.484		Prob > F	=	0.0000
Residual	1823723.08	4652	392.02	9897		R-squared	=	0.2464
4	• • • • • • • • • • • • • • • • • • • •					Adj R-squared	=	0.2456
Total	2420065.50	4657	519.66	1908		Root MSE	=	19.80
sbp	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
bmi	1.359621	.0734	663	18.507	0.000	1.215592		1.50365
age	.5173521	.0517	948	9.988	0.000	.4158098		6188944
scl	.0327898	.0069	506	4.718	0.000	.0191632		0464163
woman	-29.14655	3.316	662	-8.788	0.000	-35.64878	-2	2.64432
agewoman	.6646316	.0709	159	9.372	0.000	.5256029		8036603
	65 74423	3.324	712	19.774	0.000	59,22622	7	2.26224

c) Leverage

The leverage h_i of the i^{th} patient is a measure of her potential to influence the parameter estimates if the i^{th} residual is large.

 h_i has a complex formula involving the covariates $x_1, x_2, ..., x_k$ (but not the dependent variable y).

In all cases $0 \le h_i \le 1$.

The larger h_i the greater the leverage.

The variance of \hat{y}_i is var $(\hat{y}_i) = h_i s^2$.

Note that $h_i = \operatorname{var}(\hat{y}_i)/s^2$.

Hence h_i can be defined as the variance of \hat{y}_i measured in units of s^2 .

~)	Standardized and Studentized residual	
; ;	The standardized residual is $r_i = e_i / (s\sqrt{1-h_i})$	{2.
	The studentized residual is $t_i = e_i / (s_{(i)} \sqrt{1 - h_i})$	{2.4
d	eleted (t _i is also called the jackknifed residual).	
[t	is often helpful to plot the studentized residual against its alue. We do this in Stata as we continue the session rec	expe orde

```
. predict yhat, xb
(41 missing values generated)
. predict res, rstudent
. * Statistics > Nonparametric analysis > Lowess smoothing
. lowess res yhat, bwidth(0.2) symbol(oh) color(gs10) lwidth(thick) ///
> yline(-1.96 0 1.96) ylabel(-2 (2) 6) ytick(-2 (1) 6) ///
> xlabel(100 (20) 180) xtitle(Expected SBP)
```


If our model fit perfectly, the lowess regression line would be flat and equal to zero, 95% of the studentized residuals would lie between ± 2 and should be symmetric about zero. In this example the residuals are skewed but the regression line keeps close to zero except for very low values of expected SBP.

Thus, this graph supports the validity of the model with respect to the expected SBP values but not with respect to the distribution of the residuals. The very large sample size, however, should keep the non-normally distributed residuals from adversely affecting our conclusions.

f) Influence

The influence of a patient is the extent to which he determines the value of the regression coefficients.

13. Cook's Distance: Detecting Multivariate Outliers

One measure of influence is Cook's distance, D_i , which is a function of r_i and h_i . The removal of a patient with a D_i value greater than 1 shifts the parameter estimates outside the 50% confidence region based on the entire data set.

Checking observations with a Cook's distance greater than 0.5 is worthwhile. Such observations should be double checked for errors. If they are valid you may need to discuss them explicitly in you paper.

It is possible for a multivariate outlier to have a major effect on the parameter estimates but not be an obvious outlier on a 2×2 scatter plot.

The Framingham data set is so large that no individual observation has an appreciable effect on the parameter estimates (the maximum Cook's distance is 0.009). We illustrate the influence of individual patients in a subset analysis of subjects with IDs from 2001 to 2050. *FramSBPbmiMulti.log* continues as follows.

	SS	df	M	S		Number of obs	= 49
Model	7953.14639	5	1590.6	2928		Prob > F	= 0.0796
esidual	32056.6903	43	745.50	4427		R-squared	= 0.1988
Total	40009.8367	48	833.53	8265		Root MSE	= 0.1056 = 27.304
sbp	Coef.	Std.	Err.	t	P> t	<mark>[50% Conf.</mark>	Interval]
+- bmi	.5163516	1.004	381	0.514	0.610	1668667	1.19957
age	.0232767	.7929	254	0.029	0.977	5161014	.5626547
scl	.0618257	.0884	284	0.699	0.488	.0016733	.1219781
woman	-72.75275	46.5	895	-1.562	0.126	-104.4447	-41.06079
gewoman	1.726515	1.018	715	1.695	0.097	1.033546	2.419483
_cons	102.6837	46.23	653	2.221	0.032	71.23184	134.1355
predict re missing v predict cc missing v	es, rstudent value generat ook, cooksd value generat	ced)					{2

	ok res		Sub TI	res	~ 2							
	cook	r	es		id	bm	i	sbp				
46.				20	46	25.	6	118				
48	06611	2.4856	42	20	48	24.	6	190				
49. <mark>.51</mark> 2	<mark>21304</mark>	5.7565	79	204	19	19.	5	260				{1]
regres	<mark>s</mark> sbp b	omi age	scl wo	man a	gewoman	n <mark>if</mark> i	d ~= 20	49, le	vel(50)			{2}
Source	1	SS	df		MS			Numb	er of obs	_	48	
	' +							F(5. 42)	=	2.83	
Model	6036	6.25249	5	120	7.2505			Prob	, F ,	=	0.0273	
lesidual	1791	8.7267	42	426.	636349			R-sq	uared	=	0.2520	
	+							Adj	R-squared	=	0.1629	
Total	2395	64.9792	47	509.	680408			Root	MSE	=	20.655	
sbp	!	Coef.	Std.	Err.	t	 :	P> t	[50% Conf.	In	terval]	
bmi	1.7	76421	.7907	071	2.2	247	0.030	1	.238443	2	.314399	{3]
age	00	069364	.599	864	-0.0	012	0.991		4150694		4011967	
scl	.05	568255	.066	901	0.8	349	0.400		0113077		1023433	
woman	-42.	87799	35.62	457	-1.2	204	0.235	-	67.1161	- 1	8.63989	
agewoman	.97	782689	.7815	332	1.2	252	0.218		4465325	1	.510005	
-			~ ~ ~ ~ ~	070		0.4	0 0 4 0		0 50300	0		

Source	SS	df	MS			Number of obs =		49
+						F(5, 43)	=	2.13
Model Rocidual	7953.14639	5	1590.629	928 197		Prop > F	=	0.0796
nesiuual	52050.0903	43	745.5044	+ 2 1		Adi R-squared	2	0.1988
Total	40009,8367	48	833.5382	265		Root MSE	_	27.304
+bmj	.5163516	1.004	 381	0.514	0.610	1668667	••••	1.19957
+						· · · · · · · · · · · · · · · · · · ·		
	.5163516 0020767	7020	381 954	0.514	0.610	1008067		1.19957
aye	.0232/0/	./929	204 287	0.029	0.977	5101014		1010781
woman	-72.75275	46.5	895	-1.562	0.126	-104.4447	-4	1.06079
agewoman	1.726515	1.018	715	1.695	0.097	1.033546	2	.419483
0000	102 6937	46 23	653	0 001	0 032	71 23194	- 4	34 1355

15. Least Squares Estimation

In simple linear regression we have introduced the concept of estimating parameters by the method of least squares.

- We chose a model of the form $E(y_i) = \alpha + \beta x_i$.
- * We estimated α by *a* and β by *b* letting
 - $\hat{y} = a + bx$ and then choosing a and b so as to minimize

the sum of squared residuals $\Sigma (y - \hat{y})^2$

This approach works well for linear regression. It is ineffective for some other regression methods

Another approach which can be very useful is **maximum likelihood estimation**

16. Maximum Likelihood Estimation	
In simple linear regression we observed pairs of observation	s
$\{(y_i, x_i): i = 1, 2, \dots, n\}$ and fit the model $E(y_i) = \alpha + \beta x_i$	
We calculate the likelihood function $L(\alpha,\beta \{(y_i,x_i): i = 1,2,\dots,n\})$ which is the probability of obtaining the observed data given the specified value of α and β .	{1}
The maximum likelihood estimates of α and β are those va of these parameters that maximize equation {1} In linear regression the maximum likelihood and least squ estimates of α and β are identical.	lues ares

We seek a more flexible approach to building non-linear regression models using multiple linear regression models.

19. Restricted Cubic Splines

We wish to model y_i as a function of x_i using a flexible non-linear model. In a **restricted cubic spline model** we introduce *k* knots on the *x*-axis located at t_1, t_2, \dots, t_k . We select a model of the expected value of *y* that

is linear before t_1 and after t_k .

consists of piecewise cubic polynomials between adjacent knots (i.e. of the form $ax^3 + bx^2 + cx + d$)

is continuous and smooth at each knot. (More technically, its first and second derivatives are continuous at each knot.)

An example of a restricted cubic spline with three knots is given on the next slide.

Given	x and κ knots, a restricted cubic spine can be defined by
$y = \alpha +$	$x_1eta_1+x_2eta_2+\dots+x_{k-1}eta_{k-1}$
for sui	tably defined values of x_i
These indepe	covariates are functions of x and the knots but are endent of y .
$x_1 = x$	and hence the hypothesis $\beta_2 = \beta_3 = \cdots = \beta_{k-1} = 0$ tests the linear hypothesis.
If x is $\frac{1}{2}$ This factorial calculation	less than the first knot then $x_2 = x_3 = \cdots = x_{k-1} = 0$ act will prove useful in survival analyses when ating relative risks.
Progra other s of thes little c	The function of the formula x_1, \dots, x_{k-1} are available in Stata, R and statistical software packages. The functional definitions we terms are not pretty (see Harrell 2001), but this is of oncern given programs that will calculate them for you.
Users	can specify the knot values. However, it is often reasonable

Harrell (2001) recommends placing knots at the quantiles of the x variable given in the following table

Number of knots k	Kno	t location	s express	ed in qua	ntiles of t	he x var	iable
3	0.1	0.5	0.9				
4	0.05	0.35	0.65	0.95			
5	0.05	0.275	0.5	0.725	0.95		
6	0.05	0.23	0.41	0.59	0.77	0.95	
7	0.025	0.1833	0.3417	0.5	0.6583	0.817	0.975

The basic idea of this table is to place t_1 and t_k near the extreme values of x and to space the remaining knots so that the proportion of observations between knots remains constant.

When there are fewer than 100 data points Harrell recommends replacing the smallest and largest knots by the fifth smallest and fifth largest observation, respectively.

Create				
cicdio	Plots if/in Yaxis Xaxi	is Titles Legend Overall Bu		
Edit	Tale	1 1 2 1 1 2 1	[
Disable			Properties	
Enable				
Move Up	Major tick/label properties	Minor tick/label properties		
Move Down	Axis line properties	Axis scale properties		
	Reference lines			
	- 104 ·	4		
el properties	(y axis) (major 🗙	of graph		
1				
			d Cubmit	
			Submic	
		🖴 Axis s	cale properties (y axis)
ustom rule:			and the state of the	
(2)10 20(20)100 200	?		garithmic scale	
e number of ticks and t	heir relative positions	L Hevers	e scale to run from maximum t	to minimum
	p	Exter	nd range of axis scale	
			Lower Imit:	
			Upper limit:	
	Edit Disable Enable Move Up Move Down Move Down El properties d d ustom rule: (2)10 20(20)100 200 enumber of ticks and t	E dt Diable Enble Move Up Move Up Move Down Auis Impropeties Reference Ines rel properties (y axis) (major X d d e number of ticks and their relative positions.	E dt Diable Endde Move Up Move Up Move Down Axis Ine properties Minor tick/label properties Axis scale properties Reference lines rector of the scale properties Reference lines Construction Construct	E dit Disable Enable Move Up Move Up Axis Ince properties Minor tick/label properties Axis scale properties Peterence lines Peterence

Smap1 996 85.31727 26.83566 20 7 Smap2 996 20.06288 27.34701 0 185.66 Smap3 996 7.197497 11.96808 0 89.577 Smap4 996 3.121013 5.96452 0 48.206	20 18 0 185.634 0 89.5716	26.83566	85 31727		
_Smap2 996 20.06288 27.34701 0 185.60 _Smap3 996 7.197497 11.96808 0 89.57 _Smap4 996 3.121013 5.96452 0 48.208	0 185.634 0 89.5716	07 04701	03.01727	996	_Smap1
_Smap3 996 7.197497 11.96808 0 89.57 _Smap4 996 3.121013 5.96452 0 48.208	0 89.5716	27.34701	20.06288	996	_Smap2
_Smap4 996 3.121013 5.96452 0 48.208		11.96808	7.197497	996	_Smap3
	0 48.2088	5.96452	3.121013	996	_Smap4
negative values.		op		alues.	negative va
5					0

. generate	log_	_los = log(los	s)					
. regress	log_l	los _S*						{3}
Sour	ce	SS	df	MS		Number of obs	= 996	
Mod Residu	el al	60.9019393 610.872879	4 1 991 .	5.2254848 616420665		F(4, 991) Prob > F R-squared Adi B-squared	= 0.0000 = 0.0907 = 0.0870	
Tot	al	671.774818	995 .	675150571		Root MSE	= .78512	
log_l	.os	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]	
_Sma _Sma _Sma _Sma _co	p1 p2 p3 p4 ons	.0296009 3317922 1.263893 -1.124065 1.03603	.005956 .049693 .194299 .189072 .325010	6 4.97 2 -6.68 3 6.50 2 -5.95 7 3.19	0.000 0.000 0.000 0.000 0.001	.017912 4293081 .8826076 -1.495092 .3982422	.0412899 2342762 1.645178 7530367 1.673819	
	{3}	This comma variables th variables w An equivale be regress lo	and regr at start ith these ant way	esses log_l with the ch e names are of running Smap1 _Sma	l os agai naracter e the spl this regn np2 _Sma	nst all s _S . The only ine covariates. ression would p3 _Smap4		

Source	SS	df	Ν	IS		Number of obs	= 996
+ Model	60.9019393	4	15.225	54848		F(4, 991) Prob > F	= 24.70
Residual	610.872879	991	.61642	20665		R-squared	= 0.0907
Total	671.774818	995	.67515	50571		Adj R-squared Root MSE	= 0.0870 = .78512
log_los	Coef.	Std. I	Err.	t	P> t	[95% Conf.	Interval
_Smap1	.0296009	.0059	566	4.97	0.000	.017912	.0412899
_Smap2	3317922	.04969	932	-6.68	0.000	4293081	234276
_Smap3	1.263893	.19429	993	6.50	0.000	.8826076	1.645178
_Smap4 _cons	-1.124065 1.03603	.3250	722 107 	-5.95 3.19	0.000	-1.495092 .3982422	1.673819
{4} T a s le 0	his F statisti ssociated wit imultaneousl ength of stay .00005.	c tests h the p y zero. is unat	the nu parame In oth ffected	all hypo eters of ner wor by MA	othesis t the spli ds, it te P. It is	hat the coeffic ine covariates a sts the hypoth significant wit	ients are esis that th P <

```
* Statistics > Postestimation > Reports and statistics
. estat ic
                                                                                {5}
                           -----
Model | Obs ll(null) ll(model) df AIC BIC
-----+----+
         . 996 -1217.138 -1169.811 5 2349.623 2374.141
                                                                   . . . . . . . . . . . . .
     . . . . . . . .
                     . . . . . . .
                              Note: N=Obs used in calculating BIC; see [R] BIC note
                                estat - Postestimation statistics for regress
                                                                          _ 🗆 🗙
{5} Calculate the AIC and
                                  Reports and statistics: (subcommand)
                                 Durbin-Watson d statistic (dwatson - time sen
Information criteria (ic)
Summarize estimation sample (summarize)
Covariance matrix estimates (vce)
Bootstrap confidence intervals (bootstrap)
                                                                            -
     BIC for this model.
                                                                            •
                                 Number of observations for calculating BIC
                                   996 -----
                                00
                                                          OK Cancel Submit
```


E twoway - Twow Plots it/in Yaxis X	ay graphs
Plot definitions: Plot 1 Plot 2	Create Edit
	Plots ili/in Yaxis Xaxis Titles Legend Overall By Title: Properties
(line y_hat map,)	Major tick/label properties Minor tick/label properties Axis line properties Axis scale properties Reference lines
	I Hide axis Place axis on opposite side of graph Reference lines (x axis) Add lines to graph at specified x axis values: Add lines to graph at specified x axis values:
	Widh: Pater: Default
	Extend into plot margin: Default
	C Accept Cancel Submit

Plot if/n (Yaxis)X. Plot definitions: Plot 1 Plot 2	ay graphs xis Titles Legend Overall By Create Flots ii/m Y avis X axis Titles Tale-	_ X	X		
(line y_hat map,)	Length of Stay (days) Major lick/label properties Axis line properties Reference lines Hide axis Place axis on opposite side of graph	Minor tick/label properties Axis scale properties Axis scale properties Axis tick and labo Rule Labels Ticks Grid Axis rule C Use default rule C Suggest # of ticks C Range/Deta C Min Max C Custom C None	Properties	(y axis) (r 61 "100" 5.3 "200	najor 🗙
		00	Accept	Cancel	Submit

map	
Create spline by specifying C New variables and knots for linear spline:	Main Weights Options
Example: "mid 10 moderate 20 heavy 30 extre	Construct new variables so that when they are used in estimation Coefficients measure the slopes for the intervals Coefficients represent the change in slope from the preceding interval
New variable stub and number of variables to (Copplay the values of the knots used in creating the spine Place knots at percentiles rather than equally spaced over the range Knot specification for restricted cubic spine Final Number of knots to use Cocation of knots

	SS	df	MS		Number of obs	= 99
Model Residual	23.8065057 647.968313	2 1 993 .	1.9032528 652536065		F(2, 993) Prob > F R-squared	= 18.2 = 0.000 = 0.035
Total	671.774818	995 .	675150571		Root MSE	= .807
log_los	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval
Smap1	0110138	.002744	9 -4.01	0.000	0164002	005627
_Smap2	.0226496	.00424	B 5.33	0.000	.0143135	.030985
_cons	3.124095	.182770	6 17.09	0.000	2.765435	3.48275
oredict y_hat estat ic	t3, xb	(1)			AIC	BIC
Model	Obs 11	(null)	(,			

	knot1	knot2	knot3	kn	ot4
+ map	47	69	100		129
regress log_	los _S*				
Source	SS	df	MS		Number of obs = 99
+ Mada 1 J	40.0070000				F(3, 992) = 21.4
Model Residual	40.8276008	002 636	092003		$Prop > F = 0.000$ $R_squared = 0.060$
+					Adi B-squared = 0.05
Total	671.774818	995 .675	150571		Root MSE = $.797$
log los	Coef.	Std. Err.	t	P> t	[95% Conf. Interva
+ Sman1	0060744	00/387	1 38	0 166	- 0025343 01468
Smap2	0533119	.0155968	-3.42	0.001	083918402270
Smap3	.1509453	.0342118	4.41	0.000	.0838095 .21808
_cons	2.180462	.2600792	8.38	0.000	1.670093 2.690

Source	SS	df	MS		Number of obs	= 99
Model Residual	62.1303583 609.64446	5 12. 990 .61	4260717 5802485		F(5, 990) Prob > F R-squared	= 20.13 = 0.0000 = 0.0923
Total	671.774818	995 .67	5150571		Adj R-squared Root MSE	= 0.087 = .7847
log_los	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
Smap1	.03099	.006904	4.49	0.000	.0174418	.044538
Smap2	3837563	.0874071	-4.39	0.000	5552809	212231
_Smap3	1.111961	.3834093	2.90	0.004	.3595729	1.864349
Smap4	5873248	.4457995	-1.32	0.188	-1.462145	.287495
_Smap5	4824613	.2991149	-1.61	0.107	-1.069433	.104510
_cons	.9745223	.3623654	2.69	0.007	.2634297	1.68561
predict y_ha estat ic Model	t6, xb	(null) 11	.(model)	df	AIC	BIC
+			400.000			0070 04

	knot1 kr	not2	knot3	kno ⁻	t4 -	knot5	knot6	knot7
map	41	60	69		78 10	1.3251	113	138.075
regress log_	los _S*							
Source	SS	df	MS			Number o	f obs =	996
+						F(6,	989) =	16.92
Model	62.5237582	6	10.42062	64		Prob > F	=	0.0000
Residual	609.25106	989	.6160273	61		R-square	d =	0.0931
+ T-+-1						Adj R-sq	uared =	0.0876
TOTAL	6/1.//4818	995	.6751505	/ 1		ROOL MSE	=	./848/
log_los	Coef.	Std.	Err.	t	P> t	[95%	Conf. Ir	iterval]
+ Smap1	.0389453	.0092	924 4	.19	0.000	.0207	101 .	0571804
Smap2	3778786	.12	678 -2	.98	0.003	6266	673	12909
Smap3	.9316267	.8933	099 1	.04	0.297	8213	739 2	2.684627
_Smap4	.1269005	1.58	931 0	.08	0.936	-2.991	907 3	3.245708
_Smap5	7282771	1.034	745 -0	.70	0.482	-2.758	824	1.30227
_Smap6	3479716	.4841	835 - 0	.72	0.473	-1.298	117 .	6021733
cons	.6461153	.4496	715 1	.44	0.151	2363	046 1	.528535

```
. predict y_hat7, xb
. estat ic
       Model | Obs ll(null) ll(model)
                                                        df
                                                                    AIC
                                                                                    BIC
                   - - - - - - + -
            . 996 -1217.138 -1168.487 7 2350.975 2385.301
                Note: N=Obs used in calculating BIC; see [R] BIC note
  twoway scatter log_los map, symbol(Oh) color(gray)
                                                                                     111
         line y_hat3 map, color(red) lwidth(medthick)
>
                                                                                     ///
>
          line y_hat4 map, color(blue) lwidth(medthick)
                                                                                     111
          line y_hat5 map, color(green) lwidth(medthick)
>
                                                                                     111
      || line y_hat6 map, color(g.com) init(medthick)
|| line y_hat6 map, color(magenta) lwidth(medthick)
|| line y_hat7 map, color(cyan) lwidth(medthick)
nlobel(25, 127)
>
                                                                                     111
>
                                                                                     111
      , xlabel(25 (25) 175) xmtick(20 (5) 180) ///
ylabel(1.39 "4" 1.79 "6" 2.08 "8" 2.3 "10" 3 "20" ///
3.69 "40" 4.09 "60" 4.38 "80" 4.61 "100" 5.3 "200", angle(0)) ///
>
>
>
>
         ymtick(1.1 1.39 1.61 1.79 1.95 2.08 2.2 3.4 3.91 4.25 4.5)
                                                                                     111
        111
                                                                                    ///
```


Restricted cubic spline models of log length-of-stay by mean arterial pressure

Knots	AIC	BIC
3	2,404.340	2,419.051
4	2,379.827	2,399.442
5	2,349.623	2,374.141
6	2,349.618	2,379.040
7	2,350.975	2,385.301

- Models with AIC values within 1 or 2 of the minimum disserve consideration.
- ♦ Models with AIC values > 10 above the minimum may be discarded.
- Clearly the 3 and 4 knot models provide a poor fit.
- I have decided to use the 6 knot model but 5 or 7 knots would also be fine. Note that the 6 knot model lies between the 5 and 7 knot model,
- We have lots of observation and few parameters so the number of knots is not too important.

<pre>. regress log_los _S* { 15} Add a subtitle inside the graph</pre>						
. generate lb = y_hat - invttail(_N-6, 0.025)*se {1						
. generate ub = y_hat + invttail(_N-6, 0.025)*se						
<pre>. twoway rarea lb ub map , color(yellow) /// ></pre>						
<pre>{13} _N-6 = the number of observations minus the number of parameters = 990 = the degrees of freedom of the MSE s². lb is the lower bound of the 95% confidence interval for y_hat.</pre>						
{14} This plot adds the 95% confidence region for the regression curve.						

Plot definitions:		-	
Plot 1 Plot 2	Edit	💷 twoway - Twow	ay graphs
FIOL S	Disable	Plots if/in Yaxis Xa	xxis Titles Legend Overall By
	Enable	Title:	
	Move Up		Properties
	Move Down	Subtitle:	Properties
		Casting Spaced Know	Tipperuss
(line y_hat map)		Laption:	Subtitle properties
		- Note:	Text Box Advanced
200	0	K	Text properties
			Size:
			Color: Default
		0 B 🗈	
			Placement Position: 10 o'clock
			Margin: Default
			V Place text inside plot region
			Span width of entire graph region

Replot 6 knot model with default knot spacing. drop _S* y_hat se lb ub . mkspline _Smap = map, nknots(6) cubic . regress log_los _S* {Output Omitted} . predict y_hat, xb . predict se, stdp . generate lb = y_hat - invttail(_N-6, 0.025)*se . generate ub = y_hat + invttail(_N-6, 0.025)*se twoway rarea lb ub map , color(yellow) 111 || scatter log_los map, symbol(Oh) color(blue) 111 111 111 111 111 ymtick(1.1 1.39 1.61 1.79 1.95 2.08 2.2 3.4 3.91 4.25 4.5) 111 xline(47 63 73 93 108.69 129, lcolor(gray)) 111 ytitle(Length of Stay (days))
subtitle("Default" "Knot" "Values" 111 /// , ring(0) position(10)) legend(off)

. predict rstude	ent, rstuder	nt		
. generate big =	= <mark>abs(</mark> rstude	ent)>2		
. * Statistics > . tabulate big	Summaries,	tables and	tests > Tab	les > One-way tables
big	Freq.	Percent	Cum.	Note that 4.72% of the
0 1	949 47	95.28 4.72	95.28 100.00	studentized residuals are greater than 2.
Total	996	100.00		
<pre>* Draw a scat * Overlay the * twoway scatter > lowess > , ytitler</pre>	ter plot of associated rstudent m student ma Studentized	the student lowess regr hap, symbol(O ap, lwidth(th l Residual) y	ized residu ession curv h) ick) line(-2 0 2	als against MAP e on this graph. /// , lcolor(blue)) legend(off)

* * Plot expected LOS against MA * Truncate LOS > 70.	P on a linear scale.
<pre>* . generate e_los = exp(y_hat) . generate lb_los = exp(lb) . generate ub_los = exp(ub) . generate truncated_los = los</pre>	Length of stay is badly skewed. In order to keep the range of the y-axis reasonable lets truncate this distribution at 70. We will use a graphics editor to fix the resulting graph.
. * Data > Create or change data . replace truncated_los = 80 if l (29 real changes made)	<pre>> Create new variable os > 70</pre>
<pre>. twoway rarea lb_los ub_los map > scatter truncated_los m > line e_los map, color(re > rline lb_los ub_los map > lwidth(thin thin) > , xlabel(25 (25) 175) xmtic > ylabel(0 (10) 70) ytitle(> legend(order(3 "Expected > 1 "95% Confidence Int</pre>	<pre>, color(yellow) /// ap , symbol(Oh) color(blue) /// d) lwidth(medthick) /// , color(yellow) /// {16}</pre>
{15} The scatter plot is so dense obscures the 95% confiden the outline of this band on plot makes it easier to see.	e that it often ce band. Plotting top of the scatter

Cited References

- Levy D, National Heart Lung and Blood Institute., Center for Bio-Medical Communication. 50 Years of Discovery : Medical Milestones from the National Heart, Lung, and Blood Institute's Framingham Heart Study. Hackensack, N.J.: Center for Bio-Medical Communication Inc.; 1999.
- Knaus, W.A., Harrell, F.E., Jr., Lynn, J., Goldman, L., Phillips, R.S., Connors, A.F., Jr. et al. The SUPPORT prognostic model. Objective estimates of survival for seriously ill hospitalized adults. Study to understand prognoses and preferences for outcomes and risks of treatments. Ann Intern Med. 1995; 122:191-203.

For additional references on these notes see.

Dupont WD. Statistical Modeling for Biomedical Researchers: A Simple Introduction to the Analysis of Complex Data. 2nd ed. Cambridge, U.K.: Cambridge University Press; 2009.