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2: Multiple Linear Regression 2.1

We usually assume that the patient’s response y is causally related to
the variables xi1, xi2, …, xik through the model. These latter variables
are called covariates or explanatory variables; y is called the
dependent or response variable.

i are independently distributed and has a normal distribution with 
mean 0 and standard deviation , and

1.  The Model

yi =  + 1xi1 + 2xi2 + … + kxik + i

xi1, xi2, …, xik are known variables,

yi is the value of the response variable for the ith patient.

, 1, 2, …, k are unknown parameters,

where
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2: Multiple Linear Regression 2.2

2.  Reasons for Multiple Linear Regression

a)  Adjusting for confounding variables

To investigate the effect of a variable on an outcome measure 
adjusted for the effects of other confounding variables.
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ii) If yi increases rapidly with and xi1, and xi1 and xi2 are highly 
correlated then the rate of increase of yi with increasing xi1 when 

xi2 is held constant may be very different from this rate of 
increase when xi2 is not restrained.

i)  1 estimates the rate of change of  yi with xi1 among patients     
with the same values of xi2, xi3, …, xik.

NOTE:  The model assumes that the rate of change of 
yi with xi1 adjusted for xi1, xi2, …, xik is the same 
regardless of the values of these latter variables.
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b)  Prediction

To predict the value of y given x1, x2, …, xk

3.  Estimating Parameters

Let                                               be the estimate of yi given xi1, xi2, …, xik.

We estimate a, b1, …, bk by minimizing (  )y y 2

1 1 2 2ˆ ...i i i k iky a b x b x b x    

may be rewritten

1 1 1 2 2 2ˆ ( ) ( ) ... ( ).i i i i k ik ky y b x x b x x b x x        {2.1}

We estimate the expected value of yi among subjects whose covariate 
values are identical to those of the ith patient by      .  The equationˆiy

1 1 2 2ˆ ... .i i i k iky a b x b x b x    

1 1 2 2ˆThus,  when , ,...,  and .i i i ik ky y x x x x x x   

4.  Expected Response in the Multiple Model

The expected value of both yi and      given her covariates is

1 1 2 2ˆ[ ] E[ ] ... .      i i i i i i k iky y x x x   x x

ˆiy

Follow-up information on coronary heart disease is also provided.

This data set is a subset of the 40 year data from the Framingham
Heart Study that was conducted by the National Heart Lung and Blood
Institute. Recruitment of patients started in 1948. At that time of the
baseline exams there were no effective treatment for hypertension.

5.  Framingham Example:  SBP, Age, BMI, Sex and 
Serum Cholesterol

a)  Preliminary univariate analysis

The Framingham data set contains data on 4,699 patients.  On each 
patient we have the baseline values of the following variables:

sbp Systolic blood pressure in mm Hg.

age Age in years

scl Serum cholesterol in mg/100ml

bmi Body mass index in kg/m2

sex 1 = Men

2 = Women
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2: Multiple Linear Regression 2.4

Source |       SS       df       MS                  Number of obs =    4690
---------+------------------------------ F(  1,  4688) =  565.07

Model |  262347.407     1  262347.407               Prob > F      =  0.0000
Residual |  2176529.37  4688  464.276742               R-squared     =  0.1076
---------+------------------------------ Adj R-squared =  0.1074

Total |  2438876.78  4689  520.127271               Root MSE      =  21.547

------------------------------------------------------------------------------
sbp |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]

---------+--------------------------------------------------------------------
bmi |    1.82675   .0768474     23.771   0.000       1.676093    1.977407

_cons |   85.93592     1.9947     43.082   0.000       82.02537    89.84647
------------------------------------------------------------------------------

We first perform simple linear regressions of SBP on age, BMI, serum 
cholesterol.

. * FramSBPbmiMulti.log

. *

. *  Framingham data set: Multiple regression analysis of the effect of bmi on

. *  sbp (Levy 1999).

. *

. use "c:\WDDtext\2.20.Framingham.dta", clear

. regress sbp bmi

. scatter sbp  bmi, symbol(Oh)                                           ///
>    || lfit sbp bmi, ytitle(Systolic Blood Pressure)                     
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2: Multiple Linear Regression 2.5

. regress sbp age

Source |       SS       df       MS                  Number of obs =    4699
---------+------------------------------ F(  1,  4697) =  865.99

Model |  380213.315     1  380213.315               Prob > F      =  0.0000
Residual |  2062231.59  4697  439.052924               R-squared     =  0.1557
---------+------------------------------ Adj R-squared =  0.1555

Total |  2442444.90  4698  519.890358               Root MSE      =  20.954

------------------------------------------------------------------------------
sbp |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]

---------+--------------------------------------------------------------------
age |   1.057829   .0359468     29.428   0.000       .9873561    1.128301

_cons |   84.06298    1.68302     49.948   0.000       80.76347    87.36249
------------------------------------------------------------------------------

. scatter sbp  age, symbol(Oh)                                           ///
>    || lfit sbp age, ytitle(Systolic Blood Pressure)                     

10
0

15
0

20
0

25
0

30
0

S
ys

to
lic

 B
lo

od
 P

re
ss

ur
e

30 40 50 60 70
Age in Years

Systolic Blood Pressure Fitted values
 = 1.06



MPH Program,  Biostatistics II        
W.D. Dupont

February 15, 2011
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. regress sbp scl

Source |       SS       df       MS                  Number of obs =    4666
-------+------------------------------ F(  1,  4664) =  231.52
Model |  114616.314     1  114616.314               Prob > F      =  0.0000

Residual |  2308993.33  4664   495.06718               R-squared     =  0.0473
---------+------------------------------ Adj R-squared =  0.0471

Total |  2423609.64  4665   519.53047               Root MSE      =   22.25

------------------------------------------------------------------------------
sbp |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]

---------+--------------------------------------------------------------------
scl |   .1112811   .0073136     15.216   0.000       .0969431    .1256192

_cons |    107.378   1.701114     63.122   0.000        104.043     110.713
------------------------------------------------------------------------------

. scatter sbp  scl, symbol(Oh)                                           ///
>    || lfit sbp scl, ytitle(Systolic Blood Pressure)                     
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2: Multiple Linear Regression 2.7

Note that the importance of a parameter depends not only on its magnitude
but also on the range of the corresponding covariate. For example, the scl
coefficient is only 0.11 as compared to 1.83 and 1.06 for bmi and age.
However, the range of scl values is from 115 to 568 as compared to 16.2 - 57.6
for bmi and 30 - 68 for age. The large scl range increases the variation in sbp
that is associated with scl.

The univariate regressions show that sbp is related to age and scl as well as
bmi. Although the statistical significance of the slope coefficients is
overwhelming, the R-squared statistics are low. Hence, each of these risk
factors individually only explain a modest proportion of the total variability in
systolic blood pressure.

We would like better understanding of these relationships.
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2: Multiple Linear Regression 2.8
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Changing the units of measurement of a covariate can have a dramatic effect 
on the size of the slope estimate, but no effect on its biologic meaning.

For example, suppose we regressed blood pressure against weight in
grams. If we converted weight from grams to kilograms we would
increase the magnitude of the slope parameter by 1,000 but would have
no effect on the true relationship between blood pressure and weight.
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2: Multiple Linear Regression 2.9

0

1000

0 1000
Grams

0 1
Kilograms

 = 1

 = 1000

6.  Density Distribution Sunflower Plots

Scatterplots are a simple but informative tool for displaying the 
relationship between two variables.   Their utility decreases when the 
density of observations makes it difficult to see individual observations.
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2: Multiple Linear Regression 2.10

Data points are represented in one of three ways depending on the density
of observations.

1) Low Density:

2) Medium Density:

3) High Density:

A density distribution sunflower plot is an attempt to provide a better 
sense of a bivariated distribution when observations are densely packed.

Small circles representing individual data points as in a 
conventional scatterplot. 

light sunflowers.

dark sunflowers.
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A sunflower is a number of short line segments radiating from a central 
point.

In a light sunflower each petal represents one observation.

In a dark sunflower, each petal represents k observations, where k is 
specified by the user. 

The x-y plane is divided into a  lattice of hexagonal bins.  

The user can control the bin width in the units of the x-axis and thresholds 
l and d that determine when light and dark sunflowers are drawn.

Whenever there are less than l data points in a bin the individual data 
points are depicted at their exact location.  

When there are at least l but fewer than d data points in a bin they are 
depicted by a light sunflower.  

When there are at least d observations in a bin they are depicted by a dark 
sunflower.

For more details see the Stata v8.2 online documentation on the sunflower 
command.  

7.  Creating Density Distribution Plots with Stata

. *  FramSunflower.log

. *

. *  Framingham data set: Exploratory analysis of sbp and bmi

. *

. set more on

. use "c:\WDDtext\2.20.Framingham.dta", clear

. * Graphics > Smoothing ... > Density-distribution sunflower plot

. sunflower sbp bmi {1}
Bin width          =      1.15 {2}
Bin height         =   11.8892 {3}
Bin aspect ratio   =   8.95333
Max obs in a bin   =       115
Light              =         3 {4}
Dark               =        13 {5}
X-center           =      25.2
Y-center           =       130
Petal weight       =         9 {6}
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{1} Create a sunflower plot of sbp by bmi. Let the program choose all
default values. The resulting graph is given in the next slide.

{2} The default bin width is given in units of x. It is chosen to provide
40 bins across the graph.

{3} The default bin height is given in units of y. It is chosen to make
the bins regular hexagons on the graph.

{4} The default minimum number of observations in a light sunflower
bin is 3

{5} The default minimum number of observations in a dark sunflower
bin is 13

{6} The default petal weight for dark sunflowers is chosen so that the
maximum number of petals in a dark sunflower is 14.

------------------------------------------------------------------
flower      petal     No. of     No. of  estimated     actual
type     weight     petals    flowers       obs.       obs.

------------------------------------------------------------------
none                                         171        171
light          1          3         20         60         60
light          1          4         11         44         44
light          1          5         11         55         55
light          1          6          8         48         48
light          1          7          9         63         63
light          1          8          5         40         40
light          1          9          7         63         63
light          1         10          4         40         40
light          1         11          3         33         33
light          1         12          4         48         48
dark          9          1          4         36         52
dark          9          2         21        378        381
dark          9          3         11        297        285
dark          9          4         14        504        497
dark          9          5          7        315        322
dark          9          6          4        216        214
dark          9          7          5        315        314
dark          9          8          4        288        296
dark          9          9          5        405        410
dark          9         10          3        270        269
dark          9         11          2        198        197
dark          9         12          4        432        445
dark          9         13          3        351        343

------------------------------------------------------------------
4670       4690



MPH Program,  Biostatistics II        
W.D. Dupont

February 15, 2011

2: Multiple Linear Regression 2.13

50
10

0
15

0
20

0
2

50
30

0
S

ys
to

lic
 B

lo
od

 P
re

ss
ur

e

10 20 30 40 50 60
Body Mass Index

Systolic Blood Pressure 1 petal = 1 obs.

1 petal = 9 obs.



MPH Program,  Biostatistics II        
W.D. Dupont

February 15, 2011

2: Multiple Linear Regression 2.14

. more

. * Graphics > Smoothing ... > Density-distribution sunflower plot

. sunflower dbp bmi, binwidth(0.85) /// {1}
>         ylabel(50 (20) 150, angle(0)) ytick(40 (5) 145) ///
>         xlabel(20 (5) 55) xtick(16 (1) 58) ///
>         legend(position(5) ring(0) cols(1)) /// {2}
>         addplot(lfit dbp bmi,  color(green)   /// {3}
>           || lowess dbp bmi , bwidth(.2) color(cyan) )
Bin width          =       .85
Bin height         =   3.66924
Bin aspect ratio   =   3.73842
Max obs in a bin   =        59
Light              =         3
Dark               =        13
X-center           =      25.2
Y-center           =        80
Petal weight       =         5

{1} sunflower accepts most standard graph options as well as special
options that can control almost all aspects of the plot. Here
binwidth specifies the bin width to be 0.85 kg/m2.

{2} The position sub-option of the legend option specifies that the
legend will be located at 5 o’clock. ring(0) causes the legend to be
drawn within the graph region. cols(1) requires that the legend
keys be in a single column.

{3} The addplot option allows us to overlay other graphs on top of the
sunflower plot. Here we draw the linear regression and lowess
regression curves.
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2: Multiple Linear Regression 2.17
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8. Scatterplot matrix graphs

Another useful exploratory graphic is the scatter plot matrix.  Here we look at 
the combined marginal effects of sbp age bmi and scl.  The graph is restricted to 
women recruited in January to reduce the number of data points.

FramSBPbmiMulti.log continues as follows

{1} The matrix option generates a matrix scatter plot for sbp
bmi age and scl. The if clause restricts the graph to women
(sex==2) who entered the study in January (month==1).

oh specifies a small hollow circle as a plot symbol

. * Graphics > Scatterplot matrix

. graph matrix sbp bmi age scl if month==1 & sex==2 ,msymbol(oh) {1}
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This graphic shows all 2x2 scatter plots of the specified variables.
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2: Multiple Linear Regression 2.19

9.  Modeling interaction in the Framingham baseline data

The first model that comes to mind is

A potential weakness of this model is that it implies that the effects of the 
covariates on sbpi are additive.  To understand what this means, suppose we 
hold age and scl constant and look at bmi and sex.  Then the model becomes

The 4 parameter allows men and women with the same bmi to have 
different expected sbps. 

However, the slope of the sbp-bmi relationship for both men and women is 1.

sbp = constant + bmi x 1 + 4 for men, and

sbp = constant + bmi x 1 + 24 for women. 

No Interaction

Interaction

1 3 42
[ ] .i i i i i isbp bmi age scl sex          x

We know, however, that this slope is higher for women than for men.  This 
is an example of what we call interaction in which the effect of one variate 
on the dependent variable is influenced by the value of a second covariate.
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No Interaction

Interaction

Hence 4 estimates the difference in slopes between men and women.

Consider the model

sbp = 1 + bmi x 2 + women x 3 + bmi x women x 4

This model reduces to

sbp = 1 + bmi x 2 for men and

sbp = 1 + bmi x (2 + 4) + 3 for women.

We need a more complex model to deal with interaction.

Let women = sex - 1.

Then women = 1: if subject is female
0: if subject is male

FramSBPbmiMulti.log continues as follows.

. *

. *  Use multiple regression models with interaction terms to analyze

. *  the effects of sbp, bmi, age and scl on sbp.

. *

. generate woman = sex - 1

. label define truth 0 "False" 1 "True"

. label values woman truth

. generate bmiwoman = bmi*woman

(9 missing values generated)

. generate agewoman = age*woman

. generate sclwoman = woman * scl
(33 missing values generated)

We use this approach to build an appropriate multivariate model for 
the Framingham data.
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. regress sbp bmi age scl woman bmiwoman agewoman sclwoman

Source |       SS       df       MS                  Number of obs =    4658
---------+------------------------------ F(  7,  4650) =  217.41

Model |  596743.008     7  85249.0011               Prob > F      =  0.0000
Residual |  1823322.50  4650  392.112365               R-squared     =  0.2466 {1}
---------+------------------------------ Adj R-squared =  0.2454

Total |  2420065.50  4657  519.661908               Root MSE      =  19.802

------------------------------------------------------------------------------
sbp |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]

---------+--------------------------------------------------------------------
bmi |   1.260872    .130925      9.630   0.000       1.004197    1.517547
age |   .5170311   .0518617      9.969   0.000       .4153576    .6187047
scl |   .0376262   .0105242      3.575   0.000       .0169938    .0582586

woman |  -31.06614    5.29534     -5.867   0.000      -41.44751   -20.68476
bmiwoman |    .141898   .1582655      0.897   0.370      -.1683775    .4521735
agewoman |   .6658219   .0734669      9.063   0.000       .5217919    .8098519
sclwoman |  -.0078668    .014045     -0.560   0.575      -.0354017    .0196682 {2}

_cons |   67.22324   4.427304     15.184   0.000       58.54362    75.90285
------------------------------------------------------------------------------

{2} The serum cholesterol-woman interaction coefficient, -0.0079, is
five times smaller than the scl coefficient, and is not statistically
significant. Lets drop it from the model and see what happens.

{1} R-squared equals the square of the correlation coefficient between

and . It still equals /

and hence can be interpreted as the proportion of the variation in y
explained by the model.

In the simple regression of sbp and bmi we had R-squared = 0.11.
Thus, this multiple regression model explains more than twice the
variation in sbp than did the simple model.

2( )ˆ iy y 2( )iy yˆiy iy
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. regress sbp bmi age scl woman bmiwoman agewoman 

Source |       SS       df       MS                  Number of obs =    4658
---------+------------------------------ F(  6,  4651) =  253.63

Model |  596619.993     6  99436.6655               Prob > F      =  0.0000
Residual |  1823445.51  4651  392.054507               R-squared     =  0.2465 {3}
---------+------------------------------ Adj R-squared =  0.2456

Total |  2420065.50  4657  519.661908               Root MSE      =   19.80

------------------------------------------------------------------------------
sbp |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]

---------+--------------------------------------------------------------------
bmi |   1.269339   .1300398      9.761   0.000       1.014399    1.524278
age |   .5182974   .0518086     10.004   0.000        .416728    .6198668
scl |   .0332092   .0069687      4.765   0.000       .0195472    .0468712

woman |  -32.18538   4.903474     -6.564   0.000      -41.79851   -22.57224
bmiwoman |   .1323904    .157341      0.841   0.400      -.1760726    .4408534 {4}
agewoman |    .656538   .0715675      9.174   0.000       .5162319    .7968442

_cons |   67.94892   4.233177     16.052   0.000       59.64988    76.24795
------------------------------------------------------------------------------

{3} Dropping the sclwoman term has a trivial effect on the        
R-squared statistic and little effect on the model coefficients.

{4} The bmiwoman interaction term is also not significant and is an
order of magnitude smaller than the bmi term. Lets drop it.
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. regress sbp bmi age scl woman agewoman

Source |       SS       df       MS                  Number of obs =    4658
---------+------------------------------ F(  5,  4652) =  304.23

Model |  596342.421     5  119268.484               Prob > F      =  0.0000
Residual |  1823723.08  4652  392.029897               R-squared     =  0.2464 {5}
---------+------------------------------ Adj R-squared =  0.2456

Total |  2420065.50  4657  519.661908               Root MSE      =   19.80

------------------------------------------------------------------------------
sbp |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]

---------+--------------------------------------------------------------------
bmi |   1.359621   .0734663     18.507   0.000       1.215592     1.50365
age |   .5173521   .0517948      9.988   0.000       .4158098    .6188944
scl |   .0327898   .0069506      4.718   0.000       .0191632    .0464163

woman |  -29.14655   3.316662     -8.788   0.000      -35.64878   -22.64432
agewoman |   .6646316   .0709159      9.372   0.000       .5256029    .8036603

_cons |   65.74423   3.324712     19.774   0.000       59.22622    72.26224
------------------------------------------------------------------------------

{5} Dropping the preceding term reduces the R2 value by 0.04%.
The remaining terms are highly significant.

When we did simple linear regression of sbp against bmi for men and 
women we obtained slope estimates of 1.38 and 2.05 for men and women, 
respectively.

How reasonable is our model? One way to increase our intuitive
understanding of the model is to plot separate simple linear regressions of
sbp against bmi in groups of patients who are homogeneous with respect to
the other variables in the model. The following graphic is restricted to
patients with a serum cholesterol of < 225 and subdivides patients by age
and sex. In these graphs, two versions of the graph are given drawn to
different scales. The second only shows the regression lines.

Our multivariate model gives a single slope estimate of 1.36 for both sexes, 
but finds that the effect of increasing age on sbp is twice as large in women 
than men.  I.e.  For women this slope is 0.52 + 0.66 = 1.18 while for men it is 
0.52.
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The blue lines have the slope from our multiple regression model of 1.36

The red lines have slopes 1.38 for men and 2.05 for women (the slopes of 
the simple regressions in men and women respectively.

The green lines have the slope of the simple regression for patients with 
the indicated age and gender.

The yellow lines mark the mean sbp and bmi for the indicated age-gender 
group.
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For men the adjusted and unadjusted slopes are almost identical and are 
very close to the age restricted slope for all ages except 60 - 70.

However, for women the adjusted and unadjusted slopes differ
appreciably.  The adjusted slope is very close to the age restricted slopes in 
every case except age 60 - 70, where the adjusted slope is closed the age 
restricted slope than is the unadjusted slope.

Thus, our model is a marked improvement over the simple model.  The 
single sbp-bmi adjusted slope estimate appears reasonable except, for the 
oldest subjects.

Note that the mean sbp increases with age for both sexes, but increases more 
rapidly in women than in men.

The mean bmi does not vary appreciably with age in men but does increase 
with increasing age in women.

Thus age and gender confound the effect of bmi on sbp.  Do you think that 
the age-gender interaction of sbp is real or is this driven by some other 
unknown confounding variable?
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a)  Forward Selection

i)     Fit all simple linear models of y against each separate x
variable.  Select the variable with the greatest significance.

10.  Automatic Methods of Model Selection

Analyses loose power when we include variables in the model that are 
neither confounders nor variables of interest.  When a large number of 
potential confounders are available it can be useful to use an automatic 
model selection program.

ii) Fit all possible models with the variable(s) selected in the 
preceding step(s) and one other.  Select as the next variable 
the one with the greatest significance among these models.

iii) repeat step ii) to add additional variables, one variable at a 
time.  Continue this process until none of the remaining 
variables have a significance level less than some threshold.

We next illustrate how this is done in Stata.

FramSBPbmiMulti.log continues as follows.

Source |       SS       df       MS              Number of obs =    4658
-------------+------------------------------ F(  5,  4652) =  304.23

Model |  596342.421     5  119268.484           Prob > F      =  0.0000
Residual |  1823723.08  4652  392.029897           R-squared     =  0.2464

-------------+------------------------------ Adj R-squared =  0.2456
Total |   2420065.5  4657  519.661908           Root MSE      =    19.8

------------------------------------------------------------------------------
sbp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
age |   .5173521   .0517948     9.99   0.000     .4158098    .6188944
bmi |   1.359621   .0734663    18.51   0.000     1.215592     1.50365
scl |   .0327898   .0069506     4.72   0.000     .0191632    .0464163

agewoman |   .6646316   .0709159     9.37   0.000     .5256029    .8036603
woman |  -29.14655   3.316662    -8.79   0.000    -35.64878   -22.64432
_cons |   65.74423   3.324712    19.77   0.000     59.22622    72.26224

------------------------------------------------------------------------------

. *

. *  Fit a model of sbp against bmi age scl and sex with 

. *  interaction terms. The variables woman, bmiwoman,

. *  agewoman, and sclwoman have been previously defined. 

. *

. * statistics > other > stepwise estimation

. stepwise, pe(.1): regress sbp bmi age scl woman bmiwoman agewoman sclwoman
{1}

begin with empty model
p = 0.0000 <  0.1000  adding   age {2}
p = 0.0000 <  0.1000  adding   bmi {3}
p = 0.0000 <  0.1000  adding   scl
p = 0.0001 <  0.1000  adding   agewoman
p = 0.0000 <  0.1000  adding   woman
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{1} Fit a model using forward selection; pe(.1) means that the P
value for entry is 0.1. At each step new variables will only be
considered for entry into the model if their P value after
adjustment for previously entered variables is <0.1.

{2} In the first step the program considers the following models.
sbp = 1 + bmi x 2

sbp = 1 + age x 2

sbp = 1 + scl x 2

sbp = 1 + woman x 2

sbp = 1 + bmiwoman x 2

sbp = 1 + agewoman x 2

sbp = 1 + sclwoman x 2

Of these models the one with age has 
the most significant slope 
parameter.  The P value associated 
with this parameter is <0.1.  
Therefore we select age and go on to 
step 2.

{3} In step 2 we consider the models

sbp = 1 + age x 2 + bmi x 3

sbp = 1 + age x 2 + scl x 3





sbp = 1 + age x 2 + sclwoman x 3
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The most significant new term in these models is bmi, which is selected.  
This process is continued until at the end of step 5 we have the model

1 2 3 4sbp age bmi scl           
5 6agewoman woman    

1 2 3 4sbp age bmi scl           

5 6 7agewoman woman bmiwoman       

In step 6 we consider the models

and

1 2 3 4sbp age bmi scl           

5 6 7agewoman woman sclwoman       

However, neither of the P values for the 7 parameter estimates in these 
models are < 0.1.  Therefore, neither of these terms are added to the model.

. *

. *  Fit a model of sbp against bmi age scl and sex with 

. *  interaction terms. The variables woman, bmiwoman,

. *  agewoman, and sclwoman have been previously defined. 

. *

. * statistics > other > stepwise estimation

. stepwise, pe(.1): regress sbp bmi age scl woman bmiwoman agewoman sclwoman

begin with empty model
p = 0.0000 <  0.1000  adding   age
p = 0.0000 <  0.1000  adding   bmi
p = 0.0000 <  0.1000  adding   scl
p = 0.0001 <  0.1000  adding   agewoman
p = 0.0000 <  0.1000  adding   woman

Source |       SS       df       MS              Number of obs =    4658
-------------+------------------------------ F(  5,  4652) =  304.23

Model |  596342.421     5  119268.484           Prob > F      =  0.0000
Residual |  1823723.08  4652  392.029897           R-squared     =  0.2464

-------------+------------------------------ Adj R-squared =  0.2456
Total |   2420065.5  4657  519.661908           Root MSE      =    19.8

------------------------------------------------------------------------------
sbp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
age |   .5173521   .0517948     9.99   0.000     .4158098    .6188944
bmi |   1.359621   .0734663    18.51   0.000     1.215592     1.50365
scl |   .0327898   .0069506     4.72   0.000     .0191632    .0464163

agewoman |   .6646316   .0709159     9.37   0.000     .5256029    .8036603
woman |  -29.14655   3.316662    -8.79   0.000    -35.64878   -22.64432
_cons |   65.74423   3.324712    19.77   0.000     59.22622    72.26224

------------------------------------------------------------------------------
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Here pr(.1) means that the program will consider variables for removal 
from the model if their associated P value is > 0.1.

b)  Backward Selection

This method is similar to the forward method except that we start with 
all the variables and eliminate the variable with the least significance.  
The data is refit with the remaining variables and the process is 
repeated until all remaining variables have a significance level below 
some threshold.

The Stata command to use backward selection for our sbp example is

. * statistics > other > stepwise estimation

. stepwise, pr(.1): regress sbp bmi age scl woman bmiwoman 
>     agewoman sclwoman, 

If you run this command in this example you will get the same answer as 
with the forward selection, which is reassuring.  In general there is no 
guarantee that this will happen.
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c)  Stepwise Selection

This method is like the forward method except that at each step,
previously selected variables whose significance has dropped below some
threshold are dropped from the model.

Suppose:

x1 is the best single predictor of y

x2 and x3 are chosen next and together predict y better than x1

Then it makes sense to keep x2 and x3 and drop x1 from the model.

In the Stata stepwise command this is done with the options -
,forward pe(.1) pr(.2)

which would consider new variables for selection with P < 0.1 and 
previously selected variables for removal with P > 0.2.

11.  Pros and cons of automated model selection

iii) They can be misleading when used for exploratory analyses 
in which the primary variables of interest are unknown and 
the number of potential covariates is large.  In this case 
these methods can exaggerate the importance of a small 
number of variables due to multiple comparisons artifacts.

iv) It is a good idea to use more than one method to see if you 
come up with the same model.

v) Fitting models by hand may sometimes be worth the effort.

i) Automatic selection methods are fast and easy to use.

ii) They are best used when we have a small number of  
variables of primary interest and wish to explore the 
effects of potential confounding variables on our models.
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12.  Residuals, Leverage, and Influence

ˆi i ie y y 

a) Residuals

The residual for the ith patient is

which is denoted Mean Square for Error in most computer programs. In
Stata it is the term in the Residual row and the MS column. k is the
number of covariates in the model.

{2.2}ŷ

b) Estimating the variance 2

We estimate 2 by s2 = (yi - i)2/(n - k - 1)

. regress sbp bmi age scl woman agewoman

Source |       SS       df       MS                  Number of obs =    4658
---------+------------------------------ F(  5,  4652) =  304.23

Model |  596342.421     5  119268.484               Prob > F      =  0.0000
Residual |  1823723.08  4652  392.029897               R-squared     =  0.2464 
---------+------------------------------ Adj R-squared =  0.2456

Total |  2420065.50  4657  519.661908               Root MSE      =   19.80

------------------------------------------------------------------------------
sbp |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]

---------+--------------------------------------------------------------------
bmi |   1.359621   .0734663     18.507   0.000       1.215592     1.50365
age |   .5173521   .0517948      9.988   0.000       .4158098    .6188944
scl |   .0327898   .0069506      4.718   0.000       .0191632    .0464163

woman |  -29.14655   3.316662     -8.788   0.000      -35.64878   -22.64432
agewoman |   .6646316   .0709159      9.372   0.000       .5256029    .8036603

_cons |   65.74423   3.324712     19.774   0.000       59.22622    72.26224
------------------------------------------------------------------------------
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c)  Leverage

The leverage hi of the ith patient is a measure of her potential to influence 
the parameter estimates if the ith residual is large.

hi has a complex formula involving the covariates x1, x2, …, xk (but not 
the dependent variable y).

The variance of    i is y
2var( ) .ˆi iy h s

Note that        var            .

Hence      can be defined as the variance of     measured in units of     .

ih    2/ˆiy s

ih ˆiy 2s

In all cases 0 < hi < 1.

The larger hi the greater the leverage.

d)  Residual variance

The variance of ei is s2(1hi)

e)  Standardized and Studentized residual

The standardized residual is     {2.3}r e s hi i i / ( )1

The studentized residual is /
( )

( 1 )ii i i
t e s h  {2.4}

where s(i) is the estimate of   obtained from equation (2.2) with the ith case 
deleted (ti is also called the jackknifed residual).

It is often helpful to plot the studentized residual against its expected
value. We do this in Stata as we continue the session recorded in
FramSBPbmiMulti.log.
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. predict yhat, xb
(41 missing values generated)

. predict res, rstudent

. * Statistics > Nonparametric analysis > Lowess smoothing

. lowess res yhat,  bwidth(0.2) symbol(oh) color(gs10) lwidth(thick)  ///
>     yline(-1.96 0 1.96) ylabel(-2 (2) 6) ytick(-2 (1) 6) ///
>     xlabel(100 (20) 180) xtitle(Expected SBP)
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If our model fit perfectly, the lowess regression line would be flat and equal to
zero, 95% of the studentized residuals would lie between + 2 and should be
symmetric about zero. In this example the residuals are skewed but the
regression line keeps close to zero except for very low values of expected SBP.

Thus, this graph supports the validity of the model with respect to the
expected SBP values but not with respect to the distribution of the residuals.
The very large sample size, however, should keep the non-normally
distributed residuals from adversely affecting our conclusions.

f)  Influence

The influence of a patient is the extent to which he determines the value of 
the regression coefficients.

13.  Cook's Distance:  Detecting Multivariate Outliers

One measure of influence is Cook’s distance, Di, which is a function of ri
and hi.  The removal of a patient with a Di value greater than 1 shifts the 
parameter estimates outside the 50% confidence region based on the entire 
data set.

Checking observations with a Cook’s distance greater than 0.5 is worthwhile.
Such observations should be double checked for errors. If they are valid you
may need to discuss them explicitly in you paper.

It is possible for a multivariate outlier to have a major effect on the 
parameter estimates but not be an obvious outlier on a 22 scatter plot.
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. *

. *  Illustrate influence of individual data points on 

. *  the parameter estimates of a linear regression.

. *

. *  Variables Manager (right click on variable to be dropped or kept)

. drop res
*  Data > Create or change data > Keep or drop observations
. keep if id > 2000 & id <= 2050
(4649 observations deleted)

. regress sbp bmi age scl woman agewoman, level(50) {1}

14.  Cook’s Distance in the SBP Regression Example

The Framingham data set is so large that no individual observation has an 
appreciable effect on the parameter estimates (the maximum Cook’s distance 
is 0.009).  We illustrate the influence of individual patients in a subset 
analysis of subjects with IDs from 2001 to 2050.  
FramSBPbmiMulti.log continues as follows.

{1} The level(50) option specifies that 50% confidence 
intervals will be given for the parameter estimates.
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. predict res, rstudent
(1 missing value generated)

. predict cook, cooksd {2}
(1 missing value generated)

Source |       SS       df       MS                  Number of obs =      49
---------+------------------------------ F(  5,    43) =    2.13

Model |  7953.14639     5  1590.62928               Prob > F      =  0.0796
Residual |  32056.6903    43  745.504427               R-squared     =  0.1988
---------+------------------------------ Adj R-squared =  0.1056

Total |  40009.8367    48  833.538265               Root MSE      =  27.304

------------------------------------------------------------------------------
sbp |      Coef.   Std. Err.       t     P>|t|       [50% Conf. Interval]

---------+--------------------------------------------------------------------
bmi |   .5163516   1.004381      0.514   0.610      -.1668667     1.19957
age |   .0232767   .7929254      0.029   0.977      -.5161014    .5626547
scl |   .0618257   .0884284      0.699   0.488       .0016733    .1219781

woman |  -72.75275    46.5895     -1.562   0.126      -104.4447   -41.06079
agewoman |   1.726515   1.018715      1.695   0.097       1.033546    2.419483

_cons |   102.6837   46.23653      2.221   0.032       71.23184    134.1355
------------------------------------------------------------------------------

{2} Define cook to equal the Cook’s distance for each data point.

The graph shows that we have one enormous residual with great influence.
Note however that there are also large residuals with little influence.

. label variable res "Studentized Residual"

. label variable cook "Cook's Distance"

. scatter cook res, ylabel(0 (.1) .5) xlabel(-2 (1) 5)
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. list cook res id bmi sbp if res > 2

cook        res         id        bmi        sbp  

46.         .          .       2046       25.6        118  
48.    .06611   2.485642       2048       24.6        190  
49.  .5121304   5.756579       2049       19.5        260 {1}

The log file continues as follows:

.  regress sbp bmi age scl woman agewoman if id ~= 2049, level(50) {2}

Source |       SS       df       MS                  Number of obs =      48
---------+------------------------------ F(  5,    42) =    2.83

Model |  6036.25249     5   1207.2505               Prob > F      =  0.0273
Residual |  17918.7267    42  426.636349               R-squared     =  0.2520
---------+------------------------------ Adj R-squared =  0.1629

Total |  23954.9792    47  509.680408               Root MSE      =  20.655

------------------------------------------------------------------------------
sbp |      Coef.   Std. Err.       t     P>|t|       [50% Conf. Interval]

---------+--------------------------------------------------------------------
bmi |   1.776421   .7907071      2.247   0.030       1.238443    2.314399 {3}
age |  -.0069364    .599864     -0.012   0.991      -.4150694    .4011967
scl |   .0568255    .066901      0.849   0.400       .0113077    .1023433

woman |  -42.87799   35.62457     -1.204   0.235       -67.1161   -18.63989
agewoman |   .9782689   .7815332      1.252   0.218       .4465325    1.510005

_cons |   73.63212   35.33972      2.084   0.043       49.58782    97.67642
------------------------------------------------------------------------------

{1} The patient with the large Cook’s D has ID 2049.

{2} We repeat the linear regression excluding this patient.

{3} Excluding this one patient increases the bmi coefficient from 
0.516 to 1.78, which exceeds the upper bound of the 50% confidence 
interval for bmi from the initial regression.
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Source |       SS       df       MS                  Number of obs =      49
---------+------------------------------ F(  5,    43) =    2.13

Model |  7953.14639     5  1590.62928               Prob > F      =  0.0796
Residual |  32056.6903    43  745.504427               R-squared     =  0.1988
---------+------------------------------ Adj R-squared =  0.1056

Total |  40009.8367    48  833.538265               Root MSE      =  27.304

------------------------------------------------------------------------------
sbp |      Coef.   Std. Err.       t     P>|t|       [50% Conf. Interval]

---------+--------------------------------------------------------------------
bmi |   .5163516   1.004381      0.514   0.610      -.1668667     1.19957
age |   .0232767   .7929254      0.029   0.977      -.5161014    .5626547
scl |   .0618257   .0884284      0.699   0.488       .0016733    .1219781

woman |  -72.75275    46.5895     -1.562   0.126      -104.4447   -41.06079
agewoman |   1.726515   1.018715      1.695   0.097       1.033546    2.419483

_cons |   102.6837   46.23653      2.221   0.032       71.23184    134.1355
------------------------------------------------------------------------------

. regress sbp bmi age scl woman agewoman, level(50)

The following graph shows a scatter plot of sbp by bmi for these 50 patients.
The red and blue lines have slopes of 1.78 and 0.516, respectively (the lines
are drawn through the mean sbp and bmi values). Patients 2048 and 2049
are indicated by arrows. The influence of patient 2048 is greatly reduced by
the fact that his bmi of 24.6 is near the mean bmi. The influence of patient
2049 is not only affected by her large residual but also by her low bmi that
exerts leverage on the regression slope.
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15.  Least Squares Estimation

In simple linear regression we have introduced the concept of estimating 
parameters by the method of least squares. 

 We chose a model of the form E(yi) =  + xi. 

 We estimated  by a and  by b letting

and then choosing a and b so as to minimize y = a + bx

 2ˆy y the sum of squared residuals

This approach works well for linear regression.  It is ineffective for 
some other regression methods

Another approach which can be very useful is
maximum likelihood estimation

16.  Maximum Likelihood Estimation

In simple linear regression we observed pairs of observations

and fit the model E(yi) =  + xi  , : 1,2, ,i iy x i n 

We calculate the likelihood function

which is the probability of obtaining 
the observed data given the specified value of  and .

The maximum likelihood estimates of  and  are those values 
of these parameters that maximize equation {1}

In linear regression the maximum likelihood and least squares 
estimates of  and  are identical.

   L , | , : 1,2, ,i iy x i n    {1}
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17.  Information Criteria for Assessing Statistical Models

 fit the data well
 are simple
 will be useful for future data

We seek models that

 improve the fit to the current data
 increase model complexity
 may exaggerate findings

Increasing the number of parameters will

We often must choose between a number of competing models.  We 
seek measures of model fit that take into account both how well the 
data fit the model and the complexity of the model.

Models with lower values of AIC or BIC are usually preferred over 
models with higher values of these statistics.

Schwarz’s Bayesian Information Criteria 

BIC = 2 loge L + k loge n

Suppose we have a model with k parameters and n observations. 
Let L be the maximum value of the likelihood function for this 
model. Then

Akaike’s Information Criteria 

AIC = 2 loge L + 2k

Models that fit well will have higher values of L and hence lower 
values of 2 loge L .

Smaller models have smaller values of k and hence give lower AIC and 
BIC values.  For studies with more than 8 patients, BIC gives a higher 
penalty per parameter than AIC.

There are theoretical justifications for both methods.  Neither is 
clearly better than the other.
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Multiple linear regression can be used to build simple non-linear models.

For example, suppose that  there was a quadratic relationship between 
an independent variable x and the expected value of y.  Then we could 
use the model

2
1 2i i i iy x x      {2.5}

-2

0

2

4

6

y

-2 -1 0 1 2
x

  2E 1 2i i iy x x   

18.  Using Multiple Linear Regression for Non-linear Models

The preceding models           as a non-linear function of     .  It 
is fine when correct but performs poorly for many non-linear 
models where the x-y relationship is not quadratic.  

 E iy ix

-2

0

2

4

6

y

-2 -1 0 1 2
x

  2E 1 2i i iy x x   

Extrapolating from this model is particularly problematic.
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Note that {2.5} is a linear function of the parameters.  Hence, it 
is a multiple linear regression model even though it is non-
linear in ix

-2

0

2

4

6

y

-2 -1 0 1 2
x

2
1 2i i i iy x x     

We seek a more flexible approach to building non-linear regression 
models using multiple linear regression models.

19.  Restricted Cubic Splines

We wish to model yi as a function of xi using a flexible non-linear model.
In a restricted cubic spline model we introduce k knots on the x-axis 
located at                 .  We select a model of the expected value of y that  1 2, , , kt t t

is linear before    and after    . 1t kt

consists of piecewise cubic polynomials between adjacent knots
(i.e. of the form                              ) 3 2ax bx cx d  

is continuous and smooth at each knot.  (More technically, its first 
and second derivatives are continuous at each knot.)

An example of a restricted cubic spline with three knots is given on 
the next slide.
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1t 2t 3t

Example of a restricted cubic spline with three knots

Given x and k knots, a restricted cubic spline can be defined by

1 1 2 2 1 1k ky x x x          

for suitably defined values of ix

These covariates are functions of x and the knots but are 
independent of y.

1x x and hence the hypothesis
tests the linear hypothesis.  

2 3 1 0k      

Programs to calculate                 are available in Stata, R and 
other statistical software packages.  The functional definitions  
of these terms are not pretty (see Harrell 2001), but this is of 
little concern given programs that will calculate them for you.

1 1, , kx x 

Users can specify the knot values.  However, it is often reasonable 
to let you program choose them for you.

If x is less than the first knot then                                      
This fact will prove useful in survival analyses when 
calculating relative risks.

2 3 1 0kx x x    
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Harrell (2001) recommends placing knots at the quantiles of the x 
variable given in the following table

Number of 

knots k

3 0.1 0.5 0.9

4 0.05 0.35 0.65 0.95

5 0.05 0.275 0.5 0.725 0.95

6 0.05 0.23 0.41 0.59 0.77 0.95

7 0.025 0.1833 0.3417 0.5 0.6583 0.817 0.975

Knot locations expressed in quantiles of the x  variable

The basic idea of this table is to place t1 and tk near the extreme 
values of  x and to space the remaining knots so that the proportion 
of observations between knots remains constant.

When there are fewer than 100 data points Harrell recommends 
replacing the smallest and largest knots by the fifth smallest and 
fifth largest observation, respectively.

The choice of number of knots involves a trade-off between model 
flexibility and number of parameters.  Stone (1986) has found that 
more than 5 knots are rarely needed to obtain a good fit. 

Five knots is a good choice when there are at least 100 data points. 

Using fewer knots makes sense when there are fewer data points

It is important to always do a residual plot or, at a minimum, plot 
the observed and expected values to ensure that you have obtained a 
good fit.

The linear fits beyond the largest and smallest knots usually tracks 
the data well, but is not guaranteed to do so.
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20.  Example: the SUPPORT Study

A prospective observational study of hospitalized patients 

los = length of stay in days.

map =   baseline mean arterial pressure

1:  Patient died in hospital 
 

0:  Patient discharged alive




fate =

Lynn & Knauss: "Background for SUPPORT." 
J Clin Epidemiol 1990; 43: 1S - 4S. 

A random sample of data from 996 subjects in this 
study is available.  See

3.25.2.SUPPORT.dta
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21.  Fitting a Restricted Cubic Spline with Stata

. *  SupportLinearRCS.log

. *

. *  Draw scatter plots of length-of-stay (LOS) by mean arterial

. *  pressure (MAP) and log LOS by MAP for the SUPPORT Study data 

. *  (Lynn & Knauss, 1990).

. *

. use "C:\WDDtext\3.25.2.SUPPORT.dta" , replace

. scatter los map, symbol(Oh) xlabel(25 (25) 175) xmtick(20 (5) 180) /// {1}
>     ylabel(0(25)225, angle(0)) ymtick(5(5)240)

{1} Length of stay is highly skewed.
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. scatter los map, symbol(Oh) xlabel(25 (25) 175) xmtick(20 (5) 180) ///
>     yscale(log) ylabel(4(2)10  20(20)100 200, angle(0)) /// {2}
>     ymtick(3(1)9 30(10)90)

{2} Plotting log LOS makes the distribution of this variable more 
normal.  The yscale(log) option does this tranformation.
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. *

. *  Regress log LOS against MAP using RCS models with

. *  5 knots at their default locations.  Overlay the expected

. *  log LOS from these models on a scatter plot of log LOS by MAP.

. *

. * Data > Create... > Other variable-creation... > linear and cubic...
mkspline _Smap = map, cubic displayknots {1}

|     knot1      knot2      knot3      knot4      knot5 
-------------+-------------------------------------------------------

map |        47         66         78        106        129 

The mkspline command generates either linear or restricted cubic spline 
covariates.  The cubic option specifies that restricted cubic spline 
covariates are to be created.  This command generates these covariates for 
the variable  map.  By default, 5 knots are used at their default locations.  
Following Harrell's recommendation the computer places
them at the 5th, 27.5th, 50th, 72.5th and 95th percentiles of map. The 
values of these knots are listed.  

The 4 spline covariates associated with these 5 knots are named
_Smap1
_Smap2
_Smap3
_Smap4

These names are obtained by concatenating the name _Smap given
before the equal sign with the numbers 1, 2, 3 and 4.

{1}
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. summarize _Smap1 _Smap2 _Smap3 _Smap4 {2}

Variable |       Obs        Mean    Std. Dev.       Min        Max
-------------+--------------------------------------------------------

_Smap1 |       996    85.31727    26.83566         20        180
_Smap2 |       996    20.06288    27.34701          0   185.6341
_Smap3 |       996    7.197497    11.96808          0   89.57169
_Smap4 |       996    3.121013     5.96452          0   48.20881

{2} _Smap1 is identical to map. The other spline covariates take non-
negative values. 
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. generate log_los = log(los)

. regress log_los _S* {3}

Source |       SS       df MS              Number of obs =     996
-------------+------------------------------ F(  4,   991) =   24.70 

Model |  60.9019393     4  15.2254848           Prob > F      =  0.0000
Residual |  610.872879   991  .616420665           R-squared     =  0.0907

-------------+------------------------------ Adj R-squared =  0.0870
Total |  671.774818   995  .675150571           Root MSE      =  .78512

------------------------------------------------------------------------------
log_los |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
_Smap1 |   .0296009   .0059566     4.97   0.000      .017912    .0412899
_Smap2 |  -.3317922   .0496932    -6.68   0.000    -.4293081   -.2342762
_Smap3 |   1.263893   .1942993     6.50   0.000     .8826076    1.645178
_Smap4 |  -1.124065   .1890722    -5.95   0.000    -1.495092   -.7530367
_cons |    1.03603   .3250107     3.19   0.001     .3982422    1.673819

------------------------------------------------------------------------------
{3} This command regresses log_los against all 

variables that start with the characters _S.  The only 
variables with these names are the spline covariates.   
An equivalent way of running this regression would 
be

regress log_los _Smap1 _Smap2 _Smap3 _Smap4

. generate log_los = log(los)

. regress log_los _S*

Source |       SS       df MS              Number of obs =     996
-------------+------------------------------ F(  4,   991) =   24.70 {4}

Model |  60.9019393     4  15.2254848           Prob > F      =  0.0000
Residual |  610.872879   991  .616420665           R-squared     =  0.0907

-------------+------------------------------ Adj R-squared =  0.0870
Total |  671.774818   995  .675150571           Root MSE      =  .78512

------------------------------------------------------------------------------
log_los |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
_Smap1 |   .0296009   .0059566     4.97   0.000      .017912    .0412899
_Smap2 |  -.3317922   .0496932    -6.68   0.000    -.4293081   -.2342762
_Smap3 |   1.263893   .1942993     6.50   0.000     .8826076    1.645178
_Smap4 |  -1.124065   .1890722    -5.95   0.000    -1.495092   -.7530367
_cons |    1.03603   .3250107     3.19   0.001     .3982422    1.673819

------------------------------------------------------------------------------

{4} This F statistic tests the null hypothesis that the coefficients 
associated with the parameters of the spline covariates are 
simultaneously zero.  In other words, it tests the hypothesis that 
length of stay is unaffected by MAP.  It is significant with P < 
0.00005.
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* Statistics > Postestimation > Reports and statistics
. estat ic {5}

-----------------------------------------------------------------------------
Model |    Obs ll(null)   ll(model)     df AIC         BIC

-------------+---------------------------------------------------------------
. |    996   -1217.138   -1169.811      5     2349.623    2374.141

-----------------------------------------------------------------------------
Note:  N=Obs used in calculating BIC; see [R] BIC note

{5} Calculate the AIC and 
BIC for this model.

. * Statistics > Postestimation > Tests > Test linear hypotheses

. test _Smap2  _Smap3 _Smap4 {6}

( 1)  _Smap2 = 0
( 2)  _Smap3 = 0
( 3)  _Smap4 = 0

F(  3,   991) =   30.09
Prob > F =    0.0000

{6} Test the null hypothesis that there is a 
linear relationship between map and
log_los.  Since _Smap1 = map, this is done 
by testing the null hypothesis that the 
coefficients associated with _Smap2, _Smap3
and _Smap4 are all simultaneously zero.
This test is significant with P < 0.00005.
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. predict y_hat5, xb {7}

. scatter log_los map, symbol(Oh) /// {8}
>     || line y_hat5 map, color(red) lwidth(medthick) ///
>     , xlabel(25 (25) 175) xmtick(20 (5) 180) ///
>       xline(47 66 78 106 129, lcolor(blue)) /// {9}
>       ylabel(1.39 "4" 1.79 "6" 2.08 "8" 2.3 "10" 3 "20"                 /// {10}
>           3.69 "40" 4.09 "60" 4.38 "80" 4.61 "100" 5.3 "200", angle(0)) ///
>       ymtick(1.1 1.39 1.61 1.79 1.95 2.08 2.2 3.4 3.91 4.25 4.5) ///
>       ytitle(Length of Stay (days)) ///
>        legend(order(1 "Observed" 2 "Expected"))

{7} y_hat is the estimated expected value of
log_los under this model.

{8} Graph a scatterplot of log_los vs. map
together with a line plot of the expected
log_los vs. map. 

{9} This xline option draws vertical lines at each of the five knots. The
lcolor suboption colors these lines blue.

{10} The units of the y-axis is length of stay.  This ylabel option places the 
label 4 at the y-axis value 1.39 = log(4), 6 at the value 1.79 = log(6), etc.
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. *

. *  Plot expected LOS for models with 3, 4, 6 and 7 knots. 

. *  Use the default knot locations. Calculate AIC and BIC for each model.

. *

. *  Variables Manager

. drop _S* 

. * Data > Create... > Other variable-creation... > linear and cubic...

. mkspline _Smap = map, nknots(3) cubic displayknots {11}

|     knot1      knot2      knot3 
-------------+---------------------------------

map |        55         78        120  

{11} Define 2 spline covariates associated with 3 knots at their 
default locations. The nknots option specifies the number of 
knots.
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. regress log_los _S*

Source |       SS       df MS              Number of obs =     996
-------------+------------------------------ F(  2,   993) =   18.24

Model |  23.8065057     2  11.9032528           Prob > F      =  0.0000
Residual |  647.968313   993  .652536065           R-squared     =  0.0354

-------------+------------------------------ Adj R-squared =  0.0335
Total |  671.774818   995  .675150571           Root MSE      =   .8078

------------------------------------------------------------------------------
log_los |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
_Smap1 |  -.0110138   .0027449    -4.01   0.000    -.0164002   -.0056274
_Smap2 |   .0226496    .004248     5.33   0.000     .0143135    .0309858
_cons |   3.124095   .1827706    17.09   0.000     2.765435    3.482756

------------------------------------------------------------------------------

. predict y_hat3, xb

. estat ic

-----------------------------------------------------------------------------
Model |    Obs ll(null)   ll(model)     df AIC         BIC

-------------+---------------------------------------------------------------
. |    996   -1217.138    -1199.17      3      2404.34    2419.051

-----------------------------------------------------------------------------
Note:  N=Obs used in calculating BIC; see [R] BIC note
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. drop _S* 

. mkspline _Smap = map, nknots(4) cubic displayknots

|     knot1      knot2      knot3      knot4 
-------------+--------------------------------------------

map |        47         69        100        129 

. regress log_los _S*

Source |       SS       df MS              Number of obs =     996
-------------+------------------------------ F(  3,   992) =   21.40

Model |  40.8276008     3  13.6092003           Prob > F      =  0.0000
Residual |  630.947217   992  .636035501           R-squared     =  0.0608

-------------+------------------------------ Adj R-squared =  0.0579
Total |  671.774818   995  .675150571           Root MSE      =  .79752

------------------------------------------------------------------------------
log_los |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
_Smap1 |   .0060744    .004387     1.38   0.166    -.0025343    .0146832
_Smap2 |  -.0533119   .0155968    -3.42   0.001    -.0839184   -.0227054
_Smap3 |   .1509453   .0342118     4.41   0.000     .0838095    .2180812
_cons |   2.180462   .2600792     8.38   0.000     1.670093     2.69083

------------------------------------------------------------------------------

. predict y_hat4, xb

. estat ic

-----------------------------------------------------------------------------
Model |    Obs ll(null)   ll(model)     df AIC         BIC

-------------+---------------------------------------------------------------
. |    996   -1217.138   -1185.913      4     2379.827    2399.442

-----------------------------------------------------------------------------
Note:  N=Obs used in calculating BIC; see [R] BIC note

. drop _S* 

. mkspline _Smap = map, nknots(6) cubic displayknots

|     knot1      knot2      knot3      knot4      knot5      knot6 
-------------+------------------------------------------------------------------

map |        47         63         73         93     108.69        129 
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. regress log_los _S*

Source |       SS       df MS              Number of obs =     996
-------------+------------------------------ F(  5,   990) =   20.18

Model |  62.1303583     5  12.4260717           Prob > F      =  0.0000
Residual |   609.64446   990  .615802485           R-squared     =  0.0925

-------------+------------------------------ Adj R-squared =  0.0879
Total |  671.774818   995  .675150571           Root MSE      =  .78473

------------------------------------------------------------------------------
log_los |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
_Smap1 |     .03099    .006904     4.49   0.000     .0174418    .0445382
_Smap2 |  -.3837563   .0874071    -4.39   0.000    -.5552809   -.2122318
_Smap3 |   1.111961   .3834093     2.90   0.004     .3595729    1.864349
_Smap4 |  -.5873248   .4457995    -1.32   0.188    -1.462145    .2874957
_Smap5 |  -.4824613   .2991149    -1.61   0.107    -1.069433    .1045108
_cons |   .9745223   .3623654     2.69   0.007     .2634297    1.685615

------------------------------------------------------------------------------
. predict y_hat6, xb

. estat ic

-----------------------------------------------------------------------------
Model |    Obs ll(null)   ll(model)     df AIC         BIC

-------------+---------------------------------------------------------------
. |    996   -1217.138   -1168.809      6     2349.618     2379.04

-----------------------------------------------------------------------------
Note:  N=Obs used in calculating BIC; see [R] BIC note
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