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1. Simple Logistic Regression

a)  Example:  APACHE II Score and Mortality in Sepsis

The following figure shows 30 day mortality in a sample of septic 
patients as a function of their baseline APACHE II Score.  
Patients are coded as 1 or 0 depending on whether they are dead 
or alive in 30 days, respectively.
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We wish to predict death from baseline APACHE II score in these 
patients.

Note that linear regression would not work well here since it could 
produce probabilities less than zero or greater than one.

Let (x) be the probability that a patient with score x will die.

This equation describes a family of sigmoidal curves, three examples of 
which are given below.

b)  Sigmoidal family of logistic regression curves

Logistic regression fits probability functions of the following form:

    ( ) exp( ) / ( exp( ))x x x   1 {3.1}
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When                                      and hence                                   x x      / , 0 ( ) .x   1 1 1 05b g

The slope of (x) when (x)=.5 is /4.

For given ,  controls were the 50% survival point is located. 

For negative values of x,   exp                        as

and hence

( )  x 0 x  
( ) / ( )x   0 1 0 0

c)  Parameter values and the shape of the regression curve

For now assume that  > 0.

For very large values of x,                             and henceexp( )   x
( ) ( )x    1 1

Thus  controls how fast (x) rises from 0 to 1.

Data with a lengthy transition from survival to death should have a low 
value of . 
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Data that has a sharp survival cut off point between patients who live 
or die should have a large value of .
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    ( ) exp( ) / ( exp( ))x x x   1

1 ( )x

d)  The probability of death under the logistic model

This probability is

Hence                      probability of survival                                      


   

 
1

1
exp( ) exp( )

exp( )
   

 
x x

x

log( ( ) ( ( ))   x x x1  
The log odds of death equals

{3.2}

, and the odds of death is

   ( ) ( ( )) exp( )x x x1  

  1 1( exp( )) x

e)  The logit function

For any number  between 0 and 1 the logit function is defined by

logit( ) log( / ( ))   1

Let di =

xi be the APACHE II score of the ith patient
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( ( ))E d xi i  

Thus we can rewrite the logistic regression equation {3.1} as

logit {3.3}

E d xi i( ) ( ) 

Then the expected value of di is 
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2.  The Binomial Distribution

Let

m be the number of people at risk of death

d be the number of deaths

 be the probability that any patient dies.

The death of one patient has no effect on any other.

Then d has a binomial distribution with 

parameters m and ,

mean m, and

variance m(1-). 

Pr[d deaths] 

= {3.4}m
m d d

!
( )! !

( )(1 ) : 0,1, ,d m d d m    
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For   m = 12 and  = 0.25 this distribution is as follows. 

E d m( )   E d m( / )  and

The population mean of any random variable x is also equal to its 
expected value and is written E(x).  Hence 
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A special case of the binomial distribution is when m = 1, which is 
called a Bernoulli distribution.

( ( ))E d xi i  E(di) is determined by logit

The complete logistic regression model for the sepsis data is 
specified as follows

In this case we can have 0 or 1 deaths with probability  1- and 
, respectively.

di has a binomial distribution with 0 or 1 failures and probability of 
failure ( ) ( )x E di i

3. Generalized Linear Models

Logistic regression is an example of a generalized  linear model.  
These models are defined by three attributes:  The distribution of 
the model’s random component, its linear predictor, and its link 
function.  For logistic regression these are defined as follows.



MPH Program,  Biostatistics II    
W.D. Dupont

February 15, 2011

3: Simple logistic regression 3.7

b)  The linear predictor

 + xi  is called the linear predictor

a) The random component

di is the random component of the model.  In logistic regression, di
has a binomial distribution obtained from mi trials with mean E(di).  
(In the sepsis example, mi = 1 for all i.)

Stata refers to the distribution of the random component as 
the distributional family.

c)   The link function

E(di) is related to the linear predictor through a link function.  
Logistic regression uses a logit link function

logit(E(di)) =  + xi 

4.  Contrast Between Logistic and Linear Regression

In linear regression, the expected value of yi given xi is

forE y xi i( )    i n1 2, ,...,

5.     Maximum Likelihood Estimation

In linear regression we used the method of least squares to estimate 
regression coefficients. 

In generalized linear models we use another approach called 
maximum likelihood estimation. 

The link function is the identity function E(yi )= I(E(yi)). 

  xi
is the linear predictor.

yi is the random component of the model, which has a 
normal distribution.

yi has a normal distribution with standard deviation .
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Suppose that 5 of 50 AIDS patients die in one year.  We wish to 
estimate , the probability of death for these patients.
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L( |d = 5) is called a likelihood function and looks like this.

Let L( |d = 5) be the probability of the observed outcome (5) given 
different values of .

We assume that the number of deaths has a binomial distribution 
obtained from m= 50 patients with probability of death  for each 
patient.

The maximum likelihood estimate of  is the value of  that assigns 
the greatest probability to the observed outcome. 

Note that if  =    = 0.1 that E(d) = 50x0.1 = 5 = d

In general, maximum likelihood estimates do not have simple closed 
solutions, but must be solved interactively using numerical methods.  
This, however, is not a serious drawback given ubiquitous and powerful 
desktop computers.

In this example,    = 0.1

Thus, in this example, the maximum likelihood estimate of    is that value 
that sets the expected number of deaths equal to the observed number of 
deaths.





a)  Variance of maximum likelihood parameter estimates

It can be shown that when a maximum likelihood estimate is based 
on large number of patients,  its variance is approximately equal to 

-1/C, where C is the expected curvature of the likelihood surface 
at 
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6. Logistic Regression with glm

a)  Example:  APACHE II score and mortal outcome

. *  4.11.Sepsis.log

. *

. *  Simple logistic regression of mortal status at 30 days (fate) against

. *  baseline APACHE II score (apache) in a random sample of septic patients

. *

. use C:\\WDDtext\4.11.Sepsis.dta, clear

. summarize fate apache

Variable |       Obs        Mean    Std. Dev.       Min        Max
-------------+--------------------------------------------------------

fate |        38    .4473684    .5038966          0          1
apache |        38    19.55263    11.30343          0         41

fate ------------------------------------------------- Mortal Status at 30 Days
type:  numeric (byte)
label:  fate

range:  [0,1]                        units:  1
unique values:  2                    coded missing:  0 / 38

tabulation:  Freq.   Numeric  Label
21         0  Alive
17         1  Dead

. codebook
apache -------------------------------------------- APACHE II Score at Baseline

type:  numeric (byte)

range:  [0,41]                       units:  1
unique values:  38                   coded missing:  0 / 38

mean:   19.5526
std. dev:   11.3034

percentiles:        10%       25%       50%       75%       90%
4        10      19.5        29        35
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. glm fate apache, family(binomial) link(logit) {1}

Iteration 0:   log likelihood = -15.398485  
Iteration 1:   log likelihood =   -14.9578  
Iteration 2:   log likelihood = -14.956086  
Iteration 3:   log likelihood = -14.956085  

Generalized linear models                          No. of obs      =        38
Optimization     : ML: Newton-Raphson              Residual df     =        36

Scale param     =         1
Deviance         =  29.91217061                    (1/df) Deviance =  .8308936
Pearson          =  66.34190718                    (1/df) Pearson  =  1.842831

Variance function: V(u) = u*(1-u)                  [Bernoulli]             {2}
Link function    : g(u) = ln(u/(1-u))              [Logit]
Standard errors  : OIM

Log likelihood   = -14.95608531                    AIC             =  .8924255
BIC              = -101.0409311

------------------------------------------------------------------------------
fate |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval]

---------+--------------------------------------------------------------------
apache |   .2012365   .0608998      3.304   0.001       .0818752    .3205979
_cons |  -4.347807   1.371609     -3.170   0.002      -7.036111   -1.659503

------------------------------------------------------------------------------
. predict logodds, xb {3}
. generate prob = exp(logodds)/(1 + exp(logodds)) {4}
. list apache fate logodds prob in 1/3 {5}

{2} When there is only one patient per record Stata refers to the
binomial distribution as a Bernoulli distribution. Along with the
logit link function this implies a logisitc regression model.

{3} The xb option of the predict command specifies that the linear
predictor will be evaluated for each patient and stored in a
variable named logodds.

Recall that predict is a post estimation command whose meaning
is determined by the latest estimation command, which in this
example is glm.

{1} This glm command regresses fate against apache using a
generalized linear model. The family and link options specify that
the random component of the model is binomial and the link
function is logit. In other words, a logisitic model is to be used.

{5} The in modifier specifies that the first
through third record are to be listed.

{4} prob equals the estimated probability that a patient
will die. It is calculated using the equation
    ( ) exp( ) / ( exp( ))x x x   1
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. predict logodds, xb {3}

{3} The xb option of the predict command specifies that the linear
predictor will be evaluated for each patient and stored in a
variable named logodds.

Recall that predict is a post estimation command whose meaning
is determined by the latest estimation command, which in this
example is glm.



MPH Program,  Biostatistics II    
W.D. Dupont

February 15, 2011

3: Simple logistic regression 3.12

. generate prob = exp(logodds)/(1 + exp(logodds)) {4}

. * Data > Describe data > List data

. list apache fate logodds prob in 1/3 {5}

{5} The in modifier specifies that the first
through third record are to be listed.

{4} prob equals the estimated probability that a patient
will die. It is calculated using equation 3.1.
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{6} The first patient has an APACHE II score of 16.  Hence the 
estimated linear predictor for this patient is logodds =  + xi  = 
_cons + 16apache = -4.3478 + 160.2012 = -1.1286.  The second 
patient has apache = 25 giving logodds =  -4.3478 + 250.2012 = 
0.6831.

For the first patient

prob =

=

=

exp( ) /(1 exp( ))x x    

exp( ) /(1 exp( ))logodds logodds

exp( 1.128) /(1 exp( 1.128)) 0.2445   

apache   fate    logodds      prob  

1.       16    Alive  -1.128022   .2445263  {6}
2.       25     Dead   .6831065 .6644317  
3.       19    Alive  -.5243126   .3718444  

. sort apache

. * Variables Manager

. label variable prob “Probability of Death” {7}

{7} Assign the label Probability of Death to the variable prob.
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{8} valuelabel and angle are suboptions of the ylabel option. The labels for
the y-axis are at 0 and 1. valuelabel indicates that the value labels of fate
are to be used. That is, Alive and Dead.

angle specifies the angle at which the labels are written; an angle of 0
means that the labels will be written parallel to the x-axis.

{9} yscale(titlegap(-8)) specifies how close the title of the y-axis is to the
axis itself. The default, titlegap(0) would place the title just to the
left of the labels Dead and Alive.

{10} yaxis(2) indicates that the y-axis for the graph of prob vs.
apache is to be drawn on the right.

. scatter fate apache ///
> , ylabel(0 1, valuelabel angle(0)) yscale(titlegap(-8)) ///    {8,9}
> || line prob apache, yaxis(2) xlabel(0(10)40) {10}

Scatter plot
of fate by 
apache
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7.     Odds Ratios and the Logistic Regression Model

a)     Odds ratio associated with a unit increase in x

The log odds that patients with APACHE II scores of x and x + 1 will 
die are

logit {3.5}( ( ))  x x 

( ( )) ( )     x x x      1 1

and

logit {3.6}

respectively.

subtracting {3.5} from {3.6} gives ( ( )) ( ( )) x x 1 logit = logit
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and hence

exp() is the odds ratio for death associated with a unit 
increase in x.

( ( )) ( ( )) x x 1 logit = logit

( 1) ( )
log log

1 ( 1) 1 ( )
x x

x x
 
 

           
=

 
 

( ) / ( ( ))
( ) / ( ( ))

x x
x x

  


F
HG

I
KJ

1 1 1
1

= log

A property of logistic regression is that this ratio remains constant 
for all values of x.  

8.     95% Confidence Intervals for Odds Ratio Estimates

In our sepsis example the parameter estimate for apache () was 
0.2012 with a standard error or 0.0609.  Therefore, the odds ratio for 
death associated with a unit rise in APACHE II score is 

exp(0.2012) = 1.223

with a 95% confidence interval of 

(1.223exp(-1.960.0609), 1.223exp(1.960.0609)) 

= (1.09, 1.38).

exp(0.2012 1.96 * 0.0609)
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Then it can be shown that the standard error of  is

=ˆˆse x    
2 2 2

ˆ ˆˆ ˆ
2x x  

    

9.     95% Confidence Interval for

Let        and         denote the variance of     and    .

Let         denote the covariance between     and    .

 x

2
̂

2
̂

 ̂ ̂

ˆ̂
 ̂ ̂

x 

ˆ ˆˆ ˆ1.96 sex x         

A 95% confidence interval for             is 

Hence, a 95% confidence interval for          is 
, where

and

 x
    ˆ ˆ,L Ux x 

 
ˆ ˆˆ ˆexp 1.96 se

ˆ
ˆ ˆˆ ˆ1 exp 1.96 se

L

x x
x

x x

            
            

 
ˆ ˆˆ ˆexp 1.96 se

ˆ
ˆ ˆˆ ˆ1 exp 1.96 se

U

x x
x

x x

            
            

A 95% confidence interval for             is x  

ˆ ˆˆ ˆ1.96 sex x         
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10.     95% Confidence Intervals for Proportions

It is useful to be able to estimate a 95% confidence interval for the 
proportion di/mi  in the sepsis study.  

Let d be the number of deaths that occur in m patients,

 be the probability that an individual dies.. 

Then d/m has mean  and standard error    1 /s m    

Estimating  by                gives

as the estimated standard error of   

   1 /ˆ ˆ ˆs m    /ˆ d m 

̂

The distribution of    is approximately normal as long as    is not too 
close to 0 or 1 and m is fairly large.  This approximation gives a 
Wald 95% confidence interval for  of 

̂ ̂

 1.96ˆ ˆs  

This estimate works poorly when    is near 0 or 1.  Note that it is 
possible for this confidence interval to contain values that are less than 
0 or greater than 1.

̂

Wilson Confidence Interval for a Proportion.

A better 100(1-)% confidence interval due to Wilson is given by all values 
of  for which

   / 2 / 2/ˆz s z       

This interval differs from the Wald Interval in that the denominator is
rather than        .  This makes a big difference when  is near 0 or 1.

The 100(1-)% Wald Confidence interval is

 / 2ˆ ˆz s   (recall that                   )    .025 1.96z 

This interval consists of all  for which

   / 2 / 2/ˆ ˆz s z       

 s   ˆs 

{3.7}

Equation {3.7} can be rewritten as a complex but 
unedifying function of d, m and / 2z
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. * proportions.log

. *

. * Illustrate Wald, Wilson and exact confidence intervals

. *

. use proportions.dta

. list

+-----------------+
| fate   patients |
|-----------------|

1. |    0         10 |
2. |    1         10 |

+-----------------+

Here is data on 20 patients grouped into two
records with 10 patients per record.

Half of these patients live (fate = 0) and the other
half die (fate = 1).

* Statistics > Summaries, tables ... > Summary ... > Confidence intervals
. ci fate [freq = patients], binomial wald {1}

-- Binomial Wald ---
Variable |        Obs Mean    Std. Err.       [95% Conf. Interval]

-------------+---------------------------------------------------------------
fate |         20          .5    .1118034        .2808694    .7191306

. ci fate [freq = patients], binomial wilson {2}

------ Wilson ------
Variable |        Obs Mean    Std. Err.       [95% Conf. Interval]

-------------+---------------------------------------------------------------
fate |         20          .5    .1118034         .299298     .700702

These confidence intervals are quite close to each other.  

{2} wilson indicates that Wilson confidence intervals are to be calculated.  

{1} This ci command calculated confidence intervals for the proportion of 
patients who die (fate = 1).  [freq=patients] ensures that each record 
contributes the number of patients indicated by the patients variable.  
(Without this command modifier, each record would count as a single 
observation.)

binomial specifies that fate is a dichotomous variable.  It must be specified 
whenever Wald or Wilson confidence intervals are required.  wald indicates 
that Wald confidence intervals are to be calculated. 
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. replace patients = 18 in 1
(1 real change made)

. replace patients = 2 in 2
(1 real change made)

. list

+-----------------+
| fate   patients |
|-----------------|

1. |    0         18 |
2. |    1          2 |

+-----------------+

Suppose that the mortality rate is 10%

. ci fate [freq = patients], binomial wald

-- Binomial Wald ---
Variable |        Obs Mean    Std. Err.       [95% Conf. Interval]

-------------+---------------------------------------------------------------
fate |         20          .1     .067082               0    .2314784*

(*) The Wald interval was clipped at the lower endpoint

. ci fate [freq = patients], binomial wilson

------ Wilson ------
Variable |        Obs Mean    Std. Err.       [95% Conf. Interval]

-------------+---------------------------------------------------------------
fate |         20          .1     .067082        .0278665    .3010336

The Wald interval is much narrower than the Wilson and 
would extend below zero if Stata did not clip it at zero.
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. return list {3}

scalars:
r(ub) =  .3010336452284873
r(lb) =  .0278664812137682
r(se) =  .0670820393249937

r(mean) =  .1
r(N) =  20

. display r(ub) {4}

.30103365

{3} Stata commands store most of their output were they can be used by 
other commands.  This feature greatly extends the power and 
flexibility of this software.  The return list  command lists some of 
these values.

{4} This display command displays the upper bound of the confidence 
interval calculated by the last ci command. 

Baseline 
APACHE II 

Score

Number 
of 

Patients

Number 
of 

Deaths

Baseline 
APACHE 
II Score

Number 
of 

Patients

Number 
of 

Deaths

0 1 0 20 13 6
2 1 0 21 17 9
3 4 1 22 14 12
4 11 0 23 13 7
5 9 3 24 11 8
6 14 3 25 12 8
7 12 4 26 6 2
8 22 5 27 7 5
9 33 3 28 3 1
10 19 6 29 7 4
11 31 5 30 5 4
12 17 5 31 3 3
13 32 13 32 3 3
14 25 7 33 1 1
15 18 7 34 1 1
16 24 8 35 1 1
17 27 8 36 1 1
18 19 13 37 1 1
19 15 7 41 1 0

Example:  APACHE 
II Score & Mortality 
in Sepsis 

The Ibuprofen and 
Sepsis Trial 
contained 454 
patients with known 
baseline APACHE II 
scores (Bernard et al. 
1997).  The 30 day 
mortal outcome for 
these patients is 
summarized on the 
right.
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11.      Logistic Regression with Grouped Response Data

Suppose that there are mi patients with covariate xi.  

Let di be the number of deaths in these mi patients. 

Then di has a binomial distribution with mean mi(xi) and hence 
E(di/mi) =  (xi).

Thus the logistic model becomes 

logit(E(di/mi)) =  + xi

. *  4.18.Sepsis.Wilson.log

. *

. *  Simple logistic regression of mortality against APACE score in the 

. *  Ibuprofen in Sepsis study (Bernard et al. 1997).  There are two

. *  records in 4.18.Sepsis.Weighted.dta for each observed APACE score.

. *    apache = an APACHE II score at baseline

. *    fate   = 0 or 1 indicating patients who were alive or dead after

. *                  30 days, respectively

. *    n      = number of study subjects with a given fate and APACE score.

. *

. use 4.18.Sepsis.Weighted.dta, clear

. list if apache==6 | apache==7

+--------------------+
| apache   fate    n |
|--------------------|

11. |      6      0   11 |
12. |      6      1    3 |
13. |      7      0    8 |
14. |      7      1    4 |

+--------------------+

We need to calculate the observed mortality 
rate and its associated confidence interval 
for each APACHE score.

There were 37 distinct scores.

We could issue 47 distinct ci commands and 
transcribe the confidence intervals back into 
Stata.

This would be tedious.  Fortunately it is 
unnecessary.
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. *

. *  Collapse data to one record per APACHE score.

. *  Calculate observed mortality rate for each score and its

. *  Wilson 95% confidence interval.

. *

. * Statistics > Other > Collect statistics for a command across a by list

. statsby, by(apache): ci fate [freq=n], binomial wilson {1}
(running ci on estimation sample)

command:  ci fate [fweight= n], binomial wilson
ub:  r(ub)
lb:  r(lb)
se:  r(se)

mean:  r(mean)
N:  r(N)
by:  apache

Statsby groups
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 
......................................

{1} The statsby command can be used in combination with most other Stata
commands. It executes the command to the right of the colon for each unique 
combination of values of the variable(s) specified by the by option.  This 
command executes

ci fate [freq=n], binomial wilson

separately for each unique value of apache.  The data in memory is replaced 
by new data with one record for each distinct value of apache. Output from 
each command is also stored with the indicated variable names.
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. list if apache==6 | apache==7

+---------------------------------------------------------+
| apache         ub lb se       mean    N |
|---------------------------------------------------------|

6. |      6   .4758923   .0757139   .1096642   .2142857   14 |
7. |      7   .6093779   .1381201   .1360828   .3333333   12 |             {2}

+---------------------------------------------------------+
. generate patients = N

. generate p = mean

. generate deaths = p*patients {3}

{2} There is now only one record for each value of apache.   The variables 
N and mean store the number of patients with the specified value of 
apache and their associated mortality rate, respectively.  ub and lb
give the Wilson 95% confidence interval for this rate.

N.B. All other variables that are not specified by the by option are lost. Do 
not use this command with data that you value and have not saved!

{3} deaths give the number of patients with the indicated value of 
apache who die.

. * Statistics > Generalized linear models > Generalized linear models (GLM)

. glm deaths apache, family(binomial patients) link(logit) {1}
.
.
.

Generalized linear models                          No. of obs      =        38
Optimization     : ML: Newton-Raphson              Residual df     =        36

Scale param     =         1
Deviance         =  84.36705142                    (1/df) Deviance =  2.343529
Pearson          =  46.72842945                    (1/df) Pearson  =  1.298012

Variance function: V(u) = u*(1-u/patients)         [Binomial]
Link function    : g(u) = ln(u/(patients-u))       [Logit]
Standard errors  : OIM

Log likelihood   = -60.93390578                    AIC             =  3.312311
BIC              = -46.58605033
------------------------------------------------------------------------------
deaths |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval]

---------+--------------------------------------------------------------------
apache |   .1156272   .0159997      7.23    0.000       .0842684     .146986
_cons |  -2.290327   .2765283     -8.28    0.000      -2.832313   -1.748342

------------------------------------------------------------------------------
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{1} Regress deaths against apache score.  The bionomial random component 
and logit link function specify that logistic regression is to be used.

family(binomial patients) indicates that each observation describes the 
outcomes of multiple patients with the same apache score; patients records the 
number of subjects with each score; deaths records the number of deaths observed 
in these subjects.

. *

. *  Calculate 95% confidence region for e_prob

. *

. predict stderr, stdp

. generate lodds_lb = logodds - 1.96*stderr

. generate lodds_ub = logodds + 1.96*stderr

. generate prob_lb = exp(lodds_lb)/(1+exp(lodds_lb))

. generate prob_ub = exp(lodds_ub)/(1+exp(lodds_ub))

. label variable p "Observed Mortality Rate"

. * Data > Describe data > List data

. list p e_prob prob_lb prob_ub ci95lb ci95ub apache if apache == 20

+-----------------------------------------------------------------------+
|        p    e_prob prob_lb prob_ub lb ub apache |
|-----------------------------------------------------------------------|

20. | .4615385   .505554   .4462291   .564723   .2320607   .708562       20 |
+-----------------------------------------------------------------------+

. predict logodds, xb {2}

. generate e_prob = exp(logodds)/(1+exp(logodds))

. label variable e_prob "Expected Mortality at 30 Days"

{2} The linear predictor is logodds = -2.2903 +
.115627*apache.
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. twoway rarea prob_ub prob_lb apache, color(yellow) /// 
>     || scatter p apache, color(blue) ///
>     || rcap ub lb apache, color(blue) /// {3}
>     || line e_prob apache, yaxis(2)  clwidth(medthick) color(red)  ///
>    , ylabel(0(.2)1,labcolor(blue) angle(0)) /// {4}
>        ytick(0(.1)1, tlcolor(blue)) /// {5}
>        ylabel(0(.2)1, axis(2) labcolor(red) angle(0)) /// {6}
>        ytick(0(.1)1, axis(2) tlcolor(red)) ///
>        xlabel(0(5)40) xtick(0(1)40) ///
>        ytitle(,axis(2) color(red)) ///
>        ytitle(Observed Mortality Rate, color(blue)) ///
>        legend(order(1 "95% CI from model" 2 3 "95% CI from this obs." 4))

{3} rcap plots capped rods (error bars) joining the values of ub and
lb for each value of apache.

{4} This graph will have two y-axes: a left-axis for the observed
mortality rate and a right-axis for the expected morbidity rate. Here we
color the default (left) axis blue to match the blue scatterplot of observed
mortality rates.

{6} The axis(2) suboption indicates that this ylabel option refers to
the right axis. It is colored red to match the expected mortality curve.

{5} Also, color the tick lines blue on the left axis.

rarea
scatter
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line

line
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Note that the width of these intervals depends on the number of 
patients with a given score and the observed mortality rate.
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Overall, the fit appears quite good, although the regression curve 
comes close to the ends of the confidence intervals for some scores and 
is just outside when the APACHE score equals 18.

The blue error bars in the regression graph give 95% confidence 
intervals that are derived from the observed mortality rates at each 
separate APACHE II score.  These confidence intervals are not 
given for scores with zero or 100% mortality.  The yellow shaded 
region gives 95% confidence intervals for the expected mortality 
that are derived from the entire logistic regression.

*
*  Graph number of patients with different APACHE II scores
*
. * Graphics > Histogram
. histogram apache [freq=patients], discrete frequency xlabel(0(5)40) /// {4}
>     ylabel(0(5)30, angle(0)) ytitle(Number of Patients) 
(start=0, width=1)

{4} This command produces a histogram of the patient APACHE II
scores.

discrete specifies that the data have a discrete number of values.
It produces one bar per value unless width is also specified.

frequency specifies that the y-axis is to be number of patients
rather than proportion of patients.
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12.     Simple 2x2 Case-Control Studies

a)  Example:  Esophageal Cancer and Alcohol

Breslow & Day, Vol. I (1980) give the following results from the Ille-et-
Vilaine case-control study of esophageal cancer and alcohol (Tuyns et 
al. 1977) .

Cases were 200 men diagnosed with esophageal cancer in regional 
hospitals between 1/1/1972 and 4/30/1974.

Controls were 775 men drawn from electoral lists in each commune.

Esophageal Daily Alcohol Consumption

Cancer > 80g < 80g Total

Yes (Cases) 96 104 200

No (Controls) 109 666 775

Total 205 770 975

Then the observed prevalence of heavy drinkers is

d0/m0  = 109/775 for controls and 

d1/m1  = 96/200 for cases. 

The observed prevalence of moderate or non-drinkers is

(m0 - d0)/m0  = 666/775 for controls and 

(m1 - d1)/m1  = 104/200 for cases.

b)  Review of Classical Case-Control Theory

mi =   number of cases (i = 1) or controls (i = 0)

di =   number of cases (i = 1) or controls (i = 0) who are heavy 
drinkers.

Let
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( / ) / [( ) / ] / ( )d m m d m d m di i i i i i i i  

The observed odds that a case or control will be a heavy drinker is

= 109/666 and 96/104 for controls and cases, respectively.



If the cases and controls are a representative sample from 
their respective underlying populations then 

1. is an unbiased estimate of the true odds ratio  for heavy 
drinking in cases relative to controls in the underlying 
population.

2.  This true odds ratio also equals the true odds ratio for 
esophageal cancer in heavy drinkers relative to moderate 
drinkers.

Case-control studies would be pointless if this were not true.

 / ( )
/ ( )

 



d m d
d m d

1 1 1

0 0 0

96 /104 
109 / 666 

The observed odds ratio for heavy drinking in cases relative to controls is 

=                      = 5.64

Woolf’s estimate of the standard error of the log odds ratio is

 ˆlog
0 0 0 1 1 1

1 1 1 1
se

d m d d m d    
 

 ˆlogˆ ˆ exp 1.96seL 
     

 ˆlogˆ ˆ exp 1.96seU 
     

 ˆ ˆ,L U  

and the distribution of              is approximately normal.

Hence, if we let

and

then                is a 95% confidence interval for     .

 ˆlog 

Since esophageal cancer is rare      
also estimates the relative risk of 
esophageal cancer in heavy drinkers 
relative to moderate drinkers.


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Hence

since x1 = 1 and x0 = 0. 

log( / ( ))     1 1 11    x
log( / ( ))    0 0 01   x

Consider the logistic regression model 

logit {3.9}

where                             Probability of being a heavy drinker for 
cases (i = 1) and controls (i = 0). 

( ( / ))E d m xi i i  

E d mi i i( / )  

13.     Logistic Regression Models for 2x2 Contingency Tables

logit( ) log( / ( ))    i i i ix   1
Then {3.9} can be rewritten

log( / ( )) log( / ( ))    1 1 0 01 1   

log
/ ( )
/ ( )

log( )
 
 

 1 1

0 0

1
1



L
NM

O
QP  

Subtracting these two equations gives

  eand hence the true odds ratio

1 RST
 cases          

0 =  for controls
and xi =

a)   Estimating relative risks from the model coefficients

Our primary interest is in . Given an estimate     of  then   
  e

b)  Nuisance parameters

 is called a nuisance parameter.  This is one that is required by the 
model but is not used to calculate interesting statistics.

14.     Analyzing Case-Control Data with Stata

The Ille-et-Vilaine data may be analyzed as follows:

*  esoph_ca_cc1.log
. *
. *  Logistic regression analysis of Illes-et-Vilaine
. *  2x2 case-control data.
. * 
. *  Enter 2x2 table by hand with editor
. *
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. edit {1}

. list

cancer   alcohol  patients  

1.        0         0       666  
2.        1         0       104  
3.        0         1       109  
4.        1         1        96 

. label define yesno 0 "No" 1 "Yes" {2}

. label values cancer yesno {3}

. label define dose 0 "< 80g" 1 ">= 80g"

. label values alcohol dose

. list {4}
cancer   alcohol  patients  

1.       No     < 80g       666  
2.      Yes     < 80g       104  
3.       No    >= 80g       109  
4.      Yes    >= 80g        96

{3} We then use the label values command to link the variable 
cancer with the values label yesno.  Multiple variables can be 
assigned to the same values label.

{4} The list command now gives the value labels of the cancer and 
alcohol variables instead of their numeric values.  The numeric 
values are still available for use in estimation commands.

{1} Press the Editor button to access Stata’s spreadsheet-like editor.  
Enter three variables named cancer, alcohol and patients as 
shown in the following list command.

{2} The cancer variable takes the value 0 for controls and 1 for 
cases.  To define these values we first define a value label called 
yesno that links 0 with “No” and 1 with “Yes”.
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. *

. *  Calculate the odds ratio for esophageal cancer 

. *  associated with heavy drinking.

. *

. * Statistics > Epidemiology... > Tables... > Case-control odds ratio

. cc cancer alcohol [freq=patients], woolf

{5}

| alcohol                |             Proportion
|   Exposed   Unexposed  |     Total     Exposed

-----------------+------------------------+----------------------
Cases |        96         104  |       200      0.4800

Controls |       109         666  |       775      0.1406
-----------------+------------------------+----------------------

Total |       205         770  |       975      0.2103
|                        |
|      Point estimate    |  [95% Conf. Interval]
|------------------------+----------------------

Odds ratio |         5.640085       |  4.000589    7.951467  (Woolf)   {6}
Attr. frac. ex. |         .8226977       |  .7500368    .8742371  (Woolf)
Attr. frac. pop |         .3948949       |

+-----------------------------------------------
chi2(1) =   110.26  Pr>chi2 = 0.0000

{6} The estimated odds ratio is = 5.64
96 /104 

109 / 666 

{5} Perform a classical case-control analysis of the data in the 2x2 
table defined by cancer and alcohol.  [freq=patients] gives the 
number of patients who have the specified values of cancer and 
alcohol.  The woolf option specifies that the 95% confidence 
interval for the odds ratio is to be calculated using Woolf’s method.

We could have entered one record per patient giving

666 records with cancer = 0 and alcohol = 0,
104 records with cancer = 1 and alcohol = 0,
109 records with cancer = 0 and alcohol = 1, and
96 records with cancer = 1 and alcohol = 1.

Then the command
cc cancer alcohol, woolf

would have given exactly the same results as those shown in this
example.

N.B. We need to use the [freq=patients] command modifier whenever each 
record represents multiple patients.  This will also be true in logistic 
regression and other commands.
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. * Statistics > Binary outcomes > Logistic regression

. logit alcohol cancer [freq=patients]    {7}

Logistic regression                               Number of obs   =        975
LR chi2(1)      =      96.43
Prob > chi2     =     0.0000

Log likelihood =  -453.2224                       Pseudo R2       =     0.0962

------------------------------------------------------------------------------
alcohol |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
cancer |   1.729899   .1752366     9.87   0.000     1.386442    2.073356
_cons |  -1.809942   .1033238   -17.52   0.000    -2.012453   -1.607431

------------------------------------------------------------------------------

. *

. * Now calculate the same odds ratio using logistic regression

. *
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{7} This is the analogous logit command for simple logistic regression.
If we had entered the data as

Then we would have achieved the same analysis with the command
glm heavy cancer, family(binomial patients) link(logit)

Both of these commands fit the model

logit(E(alcohol)) =  + cancer*

giving  = 1.73 = the log odds ratio of being a heavy drinker in
cancer patients relative to controls. The standard error of  is
0.1752

The odds ratio is exp(1.73) = 5.64.

The 95% confidence interval for the odds ratio is
exp(1.73 ±1.96*0.1752) = (4.00, 7.95)

cancer heavy patients
0 109 775
1 96 200
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. * Statistics > Binary outcomes > Logistic regression (reporting odds ratios)

.  logistic alcohol cancer [freq=patients] {8}

Logistic regression                                    No. of obs =       
975

LR chi2(1) =     96.43
Prob > chi2=    0.0000

Log likelihood =   -453.2224 Pseudo R2  =    0.0962

------------------------------------------------------------------------------
alcohol | Odds Ratio   Std. Err.       z     P>|z|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
cancer |   5.640085   .9883491      9.87    0.000       4.000589    7.951467

------------------------------------------------------------------------------

{8} The logistic command calculates the odds ratio and its confidence
interval directly.
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a)   Logistic and classical estimates of the 95% CI of the OR

The 95% confidence interval is 

(5.64exp(-1.960.1752), 5.64exp(1.960.1752)) = (4.00, 7.95).

The classical limits using Woolf’s method is

(5.64exp(-1.96s), 5.64exp(1.96s)) =(4.00, 7.95),

where s2 = 1/96 + 1/109 + 1/104 + 1/666 = 0.0307 = (0.1752)2.

Hence Logistic regression is in exact agreement with classical 
methods in this simple case.

gives us Woolf’s 95% confidence interval for the odds ratio.  We will 
cover how to calculate confidence intervals using glm in the next 
chapter.

In Stata the command
cc cancer alcohol [freq=patients], woolf

15.     Regressing Disease Against Exposure

The simplest explanation of simple logistic regression is the one 
given above.  Unfortunately, it does not generalize to multiple logistic 
regression where we are considering several risk factors at once.  In 
order to make the next chapter easier to understand, let us return to 
simple logistic regression one more time.

 j

Suppose we have a population who either are or are not exposed to some 
risk factor.

Let      denote the true probability of disease in exposed (j = 1) and 
unexposed (j = 0) people.

We conduct a case-control study in which we select a representative 
sample of diseased (case) and healthy (control) subjects from the 
underlying population.  That is, the selection is done in such a way that 
the probability that an individual is selected is unaffected by her 
exposure status.
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Consider the model

logit

This is a legitimate logistic regression model with                        .   It can 
be shown, however, that this model can be rewritten as 

( ( / ))E d m xj j j  

E d mj j j( / )  

logit( )     j jx

Let mj be the number of study subject who are (j = 1) or are not (j = 0) 
exposed,

dj be the number of cases who are (j = 1) or are not (j = 0) exposed, 

xj = j denote exposure status, and

be the probability that a study subject is a case given that she is 
(j=1) or is not (j=0) exposed.

 j

where      is a different constant. However, since      cancels out in the 
odds ratio calculation,  estimates the log odds ratio for disease in 
exposed vs. unexposed members of the population as well as in our case-
control sample.

 

Thus in building logistic regression models it makes sense to regress 
disease against exposure even though we have no estimate of the 
probability of disease in the underlying population.

16.     What we have covered

 Simple logistic regression:  Assessing the effect of a 
continuous variable on a dichotomous outcome

 How logistic regression parameters affect the probability of 
an event

 Probability, odds and odds ratios

 Generalized linear models: The relationship between linear 
and logistic regression

 Wald and Wilson confidence intervals for proportions

 Plotting probability of death with 95% confidence bands as a 
function of a continuous risk factor

 Review of classic 2x2 case-control studies

 Analyzing case-control studies with logistic regression

    ( ) exp( ) / ( exp( ))x x x   1

 exp() is the odds ratio for death associated with a unit 
increase in x.



logit(E(di)) =  + xi 
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