











d) The probability of death under the logistic model This probability is  $\pi(x) = \exp(\alpha + \beta x) / (1 + \exp(\alpha + \beta x)))$ Hence  $1 - \pi(x) =$  probability of survival  $= \frac{1 + \exp(\alpha + \beta x) - \exp(\alpha + \beta x)}{1 + \exp(\alpha + \beta x)}$   $= 1/(1 + \exp(\alpha + \beta x)) , \text{ and the odds of death is}$   $\pi(x)/(1 - \pi(x)) = \exp(\alpha + \beta x)$ The log odds of death equals  $\log(\pi(x)/(1 - \pi(x))) = \alpha + \beta x$ [3.2]

e) The logit function
For any number π between 0 and 1 the logit function is defined by logit(π) = log(π/(1-π))
Let d<sub>i</sub> = {1: i<sup>th</sup> patient dies 0: i<sup>th</sup> patient lives x<sub>i</sub> be the APACHE II score of the i<sup>th</sup> patient
Then the expected value of d<sub>i</sub> is E(d<sub>i</sub>) = π(x<sub>i</sub>)
Thus we can rewrite the logistic regression equation {3.1} as logit(E(d<sub>i</sub>)) = α + βx<sub>i</sub> {3.3}

| who the number of re                 |                                |
|--------------------------------------|--------------------------------|
| <i>m</i> be the number of pe         | ople at risk of death          |
| d be the number of de                | aths                           |
| $\pi$ be the probability th          | at any patient dies.           |
| The death of one patie               | nt has no effect on any other. |
| lhen d has a <mark>binomial c</mark> | listribution with              |
| parameters $m$ and $m_{0}$           | $a \pi$ ,                      |
| mean mn, a                           |                                |



A special case of the binomial distribution is when m = 1, which is called a Bernoulli distribution.

In this case we can have 0 or 1 deaths with probability  $1-\pi$  and  $\pi$ , respectively.

The complete logistic regression model for the sepsis data is specified as follows

 $d_i$  has a binomial distribution with 0 or 1 failures and probability of failure  $\pi(x_i) = E(d_i)$ 

 $E(d_i)$  is determined by logit  $(E(d_i)) = \alpha + \beta x_i$ 



Logistic regression is an example of a generalized linear model. These models are defined by three attributes: The distribution of the model's random component, its linear predictor, and its link function. For logistic regression these are defined as follows.

## a) The random component

 $d_i$  is the **random component** of the model. In logistic regression,  $d_i$  has a binomial distribution obtained from  $m_i$  trials with mean  $E(d_i)$ . (In the sepsis example,  $m_i = 1$  for all *i*.)

Stata refers to the distribution of the random component as the distributional family.

### b) The linear predictor

 $\alpha + x_i \beta$  is called the **linear predictor** 

#### c) The link function

 $E(d_i)$  is related to the linear predictor through a link function. Logistic regression uses a logit link function

 $logit(E(d_i)) = \alpha + x_i \beta$ 









| type:                    | numeric (byte)                |                              |                    |                     |                        |
|--------------------------|-------------------------------|------------------------------|--------------------|---------------------|------------------------|
| range:<br>unique values: | [0,41]<br>38                  | С                            | uni<br>oded missir | ts: 1<br>ng: 0 / 38 | 3                      |
| mean:<br>std. dev:       | 19.5526<br>11.3034            |                              |                    |                     |                        |
| percentiles:             | 10%<br><mark>4</mark>         | 25%<br>10                    | 50%<br>19.5        | 75%<br>29           | 90%<br><mark>35</mark> |
| fate<br>type:<br>label:  | numeric (byte)<br>fate        |                              | Мо                 | rtal Statu          | s at 30 Days           |
| range:<br>unique values: | [0,1]<br>2                    | c                            | uni<br>coded missi | ts: 1<br>ng: 0 / 3  | 8                      |
| tabulation:              | Freq. Numeric<br>21 (<br>17 - | c Label<br>D Alive<br>I Dead | L                  |                     |                        |

| . <mark>glm</mark> fate a                                                         | pache, <mark>fam</mark>                                          | ily(binomial)                                                                              | link(logi                   | it)                                           |                                                       |             | {1}                                                          |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------|-------------------------------------------------------|-------------|--------------------------------------------------------------|
| Iteration 0:                                                                      | log lik                                                          | elihood = -15                                                                              | .398485                     |                                               |                                                       |             |                                                              |
| Iteration 1:                                                                      | log lik                                                          | elihood = -                                                                                | 14.9578                     |                                               |                                                       |             |                                                              |
| Iteration 2:                                                                      | log lik                                                          | elihood = -14                                                                              | .956086                     |                                               |                                                       |             |                                                              |
| Iteration 3:                                                                      | log lik                                                          | elihood = -14                                                                              | .956085                     |                                               |                                                       |             |                                                              |
| Generalized                                                                       | linear mod                                                       | els                                                                                        |                             | No.                                           | of obs                                                | =           | 38                                                           |
| Optimization                                                                      | : ML:                                                            | Newton-Raphs                                                                               | on                          | Res                                           | idual df                                              | =           | 36                                                           |
|                                                                                   |                                                                  |                                                                                            |                             | Sca                                           | le param                                              | =           | 1                                                            |
| Deviance                                                                          | = 29                                                             | .91217061                                                                                  |                             | (1/)                                          | df) Deviance                                          | =           | .8308936                                                     |
| Pearson                                                                           | = 66                                                             | .34190718                                                                                  |                             | (1/)                                          | df) Pearson                                           | =           | 1.842831                                                     |
|                                                                                   |                                                                  |                                                                                            |                             |                                               |                                                       |             |                                                              |
| Variance fun<br>Link functio<br>Standard err                                      | ction: V(u<br>n : g(u<br>ors : OIM                               | ) = u*(1-u)<br>) = ln(u/(1-u                                                               | ))                          | [Be<br>[Lo                                    | <mark>rnoulli]</mark><br>git]                         |             | {2}                                                          |
| Variance fun<br>Link functio<br>Standard err<br>Log likeliho<br>SIC               | ction: V(u<br>n : g(u<br>ors : OIM<br>od = -14<br>= -10          | ) = u*(1-u)<br>) = ln(u/(1-u<br>.95608531<br>1.0409311                                     | ))                          | [Be<br>[Lo<br>AIC                             | rnoulli]<br>git]                                      | =           | <b>{2}</b><br>.8924255                                       |
| Variance fun<br>Link functio<br>Standard err<br>Log likeliho<br>BIC<br>fate       | ction: V(u<br>n : g(u<br>ors : OIM<br>od = -14<br>= -10<br>Coef. | ) = u*(1-u)<br>) = ln(u/(1-u<br>.95608531<br>1.0409311<br>                                 | )))<br>z                    | [Be<br>[Lo<br>AIC<br>P> z                     | rnoulli]<br>git]<br>[95% Con                          | =<br><br>f. | <pre>{2} .8924255 Interval]</pre>                            |
| Variance fun<br>Link functio<br>Standard err<br>Log likeliho<br>BIC<br>fate  <br> | ction: V(u<br>n : g(u<br>ors : OIM<br>od = -14<br>= -10<br>      | ) = u*(1-u)<br>) = ln(u/(1-u<br>.95608531<br>1.0409311<br>                                 | ))<br>z<br>3,304            | [Be<br>[Lo<br>AIC<br>P> z                     | rnoulli]<br>git]<br>[95% Con<br>.0818752              | =<br>f.     | <pre>{2} .8924255 Interval] .3205979</pre>                   |
| Variance fun<br>Link functio<br>Standard err<br>Log likeliho<br>BIC<br>fate  <br> | ction: V(u<br>n : g(u<br>ors : OIM<br>od = -14<br>= -10<br>      | ) = u*(1-u)<br>) = ln(u/(1-u<br>.95608531<br>1.0409311<br>                                 | )))<br>z<br>3.304<br>-3.170 | [Be<br>[Lo<br>AIC<br>P> z <br>0.001<br>0.002  | rnoulli]<br>git]<br>[95% Con<br>.0818752<br>-7.036111 | =<br>f.     | <pre>{2} .8924255 Interval] .3205979 -1.659503</pre>         |
| Variance fun<br>Link functio<br>Standard err<br>Log likeliho<br>BIC<br>fate  <br> | ction: V(u<br>n : g(u<br>ors : OIM<br>od = -14<br>= -10<br>      | ) = u*(1-u)<br>) = ln(u/(1-u<br>.95608531<br>1.0409311<br>.0409311<br>.0608998<br>1.371609 | ))<br>z<br>3.304<br>-3.170  | [Be<br>[Lo:<br>AIC<br>P> z <br>0.001<br>0.002 | rnoulli]<br>git]<br>[95% Con<br>.0818752<br>-7.036111 | =<br>f.     | <pre>{2} .8924255 Interval] .3205979 -1.659503 [3]</pre>     |
| Variance fun<br>Link functio<br>Standard err<br>Log likeliho<br>BIC<br>fate  <br> | ction: V(u<br>n : g(u<br>ors : OIM<br>od = -14<br>= -10<br>      | ) = u*(1-u)<br>) = ln(u/(1-u<br>.95608531<br>1.0409311<br>                                 | ))<br>z<br>3.304<br>-3.170  | [Be<br>[Lo:<br>AIC<br>P> z <br>0.001<br>0.002 | rnoulli]<br>git]<br>[95% Con<br>.0818752<br>-7.036111 | =<br>f.     | <pre>{2} .8924255 Interval] .3205979 -1.659503 {3} {4}</pre> |

| {1} | This <i>glm</i> command regresses <i>fate</i> against <i>apache</i> using a generalized linear model. The <i>family</i> and <i>link</i> options specify that the <b>random component</b> of the model is <b>binomial</b> and the <b>link</b> <i>function</i> is <b>logit</b> . In other words, a <b>logisitic</b> model is to be used.                 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| {2} | When there is only one patient per record Stata refers to the binomial distribution as a <b>Bernoulli</b> distribution. Along with the <b>logit</b> link function this implies a <b>logisitc</b> regression model.                                                                                                                                     |
| {3} | The <i>xb</i> option of the <i>predict</i> command specifies that the <b>linear predictor</b> will be evaluated for each patient and stored in a variable named <i>logodds</i> .<br>Recall that <i>predict</i> is a <b>post estimation</b> command whose meaning is determined by the latest estimation command, which in this example is <i>glm</i> . |
| {4} | <b>prob</b> equals the estimated <b>probability</b> that a patient will <b>die</b> . It is calculated using the equation $\pi(x) = \exp(\alpha + \beta x)/(1 + \exp(\alpha + \beta x))$                                                                                                                                                                |
| {5} | The <i>in</i> modifier specifies that the first through third record are to be listed.                                                                                                                                                                                                                                                                 |



| <b>{3</b> } | The <i>xb</i> option of the <i>predict</i><br><b>predictor</b> will be evaluated<br>variable named <i>logodds</i> . | command specifies that the linear<br>for each patient and stored in a |
|-------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|             | Recall that <i>predict</i> is a <b>post e</b>                                                                       | stimation command whose meaning                                       |
|             | is determined by the latest                                                                                         | estimation command, which in this                                     |
|             | example is <i>glm</i> .                                                                                             |                                                                       |
|             | New variable name:                                                                                                  | New variable type:<br>float                                           |
|             | Produce:                                                                                                            | C Disconsile of the last matrix                                       |
|             | CLinear prediction (xb)                                                                                             | C Likelihood residuals                                                |
|             | C Standard error of the linear pred.                                                                                | C Pearson residuals                                                   |
|             | C Anscombe residuals                                                                                                | C Response residuals                                                  |
|             | C Dook's distance                                                                                                   | C Working residuals                                                   |
|             |                                                                                                                     |                                                                       |







| Sta      | ta/SE 11.0 - (    | C:\WDDtext\4.11.Se           | osis.dta  | - [Results | ]           |       |               |                 |
|----------|-------------------|------------------------------|-----------|------------|-------------|-------|---------------|-----------------|
| File B   | dit Data Grapi    | hics Statistics User Win     | dow Help  |            |             |       |               | 8               |
| 🚰 🖬      | a 🛛 🖸 • 止         | ·   <b>2 ·   2 B ( )</b> 0 6 |           |            |             |       |               |                 |
| Review   | Variables         | Manager                      | aan moda  | 1e         |             | No of | ohe -         | 22 III          |
|          | Enter filter text | here                         |           |            |             |       |               |                 |
| 2 3      | Drag a column     | header here to group by that | t column. |            |             |       | 🔺 Variable Pr | operties #      |
| 4        | # Variable        | Label                        | Туре      | Format     | Value Label | Notes | - Name        |                 |
| 6 L      | apache            | APACHE II Score at Basel     | . byte    | %8.0g      |             |       | Iproo         |                 |
| 7 s      | ۹ fate            | Mortal Status at 30 Days     | byte      | %8.0g      | fate        |       | Label         | u of Dooth      |
| 8 0      | logodds           | Linear prediction            | float     | %9.0g      |             |       | Probabilic    | y or Deach      |
| 10 0     | prob              |                              | float     | %9.0g      |             |       | Туре          |                 |
| 11 9     | 31                |                              |           |            |             |       | float         | <b>•</b>        |
| 4        |                   |                              |           |            |             |       | Format        |                 |
| Variable |                   |                              |           |            |             |       | %9.0g         | Create          |
| Name     |                   |                              |           |            |             |       | Value Labe    | ł               |
| apache   | -                 |                              |           |            |             |       |               | ✓ Manage        |
| fate     | 1                 |                              |           |            |             |       | Notes         |                 |
| logodds  |                   |                              |           |            |             |       | No notes      | Manage          |
| prob     |                   |                              |           |            |             |       | < >           | Reset Apply     |
|          |                   |                              |           |            |             |       |               |                 |
| 4        | 1                 |                              |           |            |             |       |               |                 |
| C:\MyDo  | c                 |                              |           |            |             |       |               |                 |
|          | -                 |                              |           |            |             |       |               |                 |
|          | 1                 |                              |           |            |             |       |               |                 |
|          | 1                 |                              |           |            |             |       |               |                 |
|          | 1                 |                              |           |            |             |       |               |                 |
|          | 1                 |                              |           |            |             |       |               |                 |
|          |                   |                              |           |            |             |       |               |                 |
|          | 1                 |                              |           |            |             |       | -             |                 |
|          | Ready             |                              |           |            |             |       |               | Vars: 4 CAP NUM |



| t definitions:<br>pt 1 Create Plots if/in Free                                                                                                                                                                                                    | Twoway graphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| catter plot<br>f fate by<br>pache<br>Move Up<br>Move Dann                                                                                                                                                                                         | Properties Minor tick/label properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Axis tick and label properties (y ax<br>Rule Labels Ticks Gid<br>Axis rule<br>C Suggest # of ticks<br>C Range/Delta<br>C Min Max<br>Cutom rule:<br>Cutom rule:<br>Cutom rule:<br>The axis rule determines the number of ticks and their relations | position (major X<br>Axis tick and label properties (y axis) (major )<br>Rue Labels Ticks Grid<br>Labels Show labels: Default<br>Color. Default<br>Size:<br>Label Strew Label gap:<br>Label g |
| Car Car                                                                                                                                                                                                                                           | Format:       ©Use value labels     Atemate spacing of adjacent labels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Plot definitions:<br>Plot 1 | Create Plots it/n Y axis X axis Titles Legend Overall By                                                                                                                       |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | Edit Title:<br>Enable Properties                                                                                                                                               |
|                             | Move Up         Major tick/label properties         Minor tick/label properties           Move Down         Axis line properties         Image: Axis title properties (y axis) |
| (scatter fate apache )      |                                                                                                                                                                                |
|                             | Image: Custom     Image: Custom       Image: Custom     Image: Custom                                                                                                          |
|                             | Accept Cancel Submit                                                                                                                                                           |

| Plots   #/m   Yaxis   Xaxis   Titles   Leg<br>Plot definitions:<br>Plot 1<br>Edit<br>Disable | nd Overal By                                                                                                                                                                                                                                                                                   |                                                                             |              |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------|
| Renable Enable Move Up                                                                       |                                                                                                                                                                                                                                                                                                |                                                                             |              |
| (scatter fale apache )                                                                       | Plot ∦/m<br>Plot ∦/m<br>Choose a plot category and type<br>OBasic plots<br>C Range plots<br>C Range plots<br>C Ringe plots<br>C Immediate plots<br>C Advanced plots<br>Plot type: (line plot)<br>Y variable: X variable<br>Prob ▼ → apache<br>V dd a second y axis on right<br>Line properties | Basic plots: (select type)<br>Scatter<br>Corriected<br>Area<br>Bar<br>Spike |              |
|                                                                                              | 00                                                                                                                                                                                                                                                                                             | Accept Ca                                                                   | ancel Submit |



| a                | ) Odds ratio associated with a unit incre                                  | ase in <i>x</i>                |
|------------------|----------------------------------------------------------------------------|--------------------------------|
| The lo<br>die ar | g odds that patients with APACHE II scores of :<br>e                       | x and x + 1 will               |
|                  | $logit(\pi(x)) = \alpha + \beta x$                                         | {3.5}                          |
| and              |                                                                            |                                |
|                  | $logit (\pi(x+1)) = \alpha + \beta(x+1) = \alpha + \beta x + \beta$        | {3.6}                          |
| respec           | ctively.                                                                   |                                |
| subtra           | acting {3.5} from {3.6} gives $\beta = \operatorname{logit}(\pi(x+1)) - 1$ | $\operatorname{logit}(\pi(x))$ |

 $\beta = \log i (\pi(x+1)) - \log i(\pi(x))$   $= \log \left(\frac{\pi(x+1)}{1-\pi(x+1)}\right) - \log \left(\frac{\pi(x)}{1-\pi(x)}\right)$   $= \log \left(\frac{\pi(x+1)/(1-\pi(x+1))}{\pi(x)/(1-\pi(x))}\right)$ and hence  $\exp(\beta) \text{ is the odds ratio for death associated with a unit increase in x.}$ A property of logistic regression is that this ratio remains constant for all values of x.





 $\begin{array}{lll} \mbox{Let} & \sigma^2_{\hat{\alpha}} \mbox{ and } \sigma^2_{\hat{\beta}} \mbox{ denote the variance of } \hat{\alpha} \mbox{ and } \hat{\beta} \ . \\ \mbox{Let} & \sigma_{\hat{\alpha}\hat{\beta}} \mbox{ denote the covariance between } \hat{\alpha} \mbox{ and } \hat{\beta} \ . \end{array}$ 

Then it can be shown that the standard error of is

$$\operatorname{se}\left[\hat{\alpha}+\hat{\beta}x\right] = \sqrt{\sigma_{\hat{\alpha}}^{2}+2x\sigma_{\hat{\alpha}\hat{\beta}}+x^{2}\sigma_{\hat{\beta}}^{2}}$$

A 95% confidence interval for  $\alpha + \beta x$  is

$$\hat{\alpha} + \hat{\beta}x \pm 1.96 \times \operatorname{se}\left[\hat{\alpha} + \hat{\beta}x\right]$$









| * Statistics > Sum<br>. ci fate [freq =                                                                                                                         | maries, tab<br>patients], I                                                                                  | Les ><br>pinomial w                                                                                    | Summary ><br>mald                                                                                                                                          | Confidence intervals {1}                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variable                                                                                                                                                        | Obs                                                                                                          | Mean                                                                                                   | Std. Err.                                                                                                                                                  | Binomial Wald<br>[95% Conf. Interval]                                                                                                                                                 |
| fate                                                                                                                                                            | 20                                                                                                           | .5                                                                                                     | .1118034                                                                                                                                                   | .2808694 .7191306                                                                                                                                                                     |
| . ci fate [freq =                                                                                                                                               | patients],                                                                                                   | oinomial w                                                                                             | vilson                                                                                                                                                     | {2}                                                                                                                                                                                   |
| Variable                                                                                                                                                        | Obs                                                                                                          | Mean                                                                                                   | Std. Err.                                                                                                                                                  | Wilson<br>[95% Conf. Interval]                                                                                                                                                        |
| fate                                                                                                                                                            | 20                                                                                                           | .5                                                                                                     | .1118034                                                                                                                                                   | .299298 .700702                                                                                                                                                                       |
| <ul> <li>Inis ci comm<br/>patients who<br/>contributes th<br/>(Without this<br/>observation.)</li> <li>binomial sp<br/>whenever Wa<br/>that Wald com</li> </ul> | and calculat<br>die (fate = 1<br>he number o<br>command n<br>ecifies that :<br>ald or Wilson<br>nfidence int | (i) i (freq=<br>f patients<br>nodifier, e<br>fate is a d<br>n confider<br>ervals are<br>ilean confider | ence intervals<br><b>patients]</b> ensu-<br>indicated by t<br>ach record wor-<br>ichotomous va-<br>ichotomous va-<br>te intervals ar-<br>te to be calculat | Tor the proportion of<br>ures that each record<br>the <i>patients</i> variable.<br>uld count as a single<br>riable. It must be specified<br>re required. <b>wald</b> indicates<br>ed. |
| {2} wilson indic                                                                                                                                                | ates that W                                                                                                  | ilson conf                                                                                             | idence interva                                                                                                                                             | ls are to be calculated.                                                                                                                                                              |
| These confidence                                                                                                                                                | intervals are                                                                                                | e quite clo                                                                                            | ese to each othe                                                                                                                                           | er.                                                                                                                                                                                   |



| Variable                    | Obs            | Mean       | Std. Err.      | Binomial Wald<br>[95% Conf. Interval] |
|-----------------------------|----------------|------------|----------------|---------------------------------------|
| <br>fate                    | 20             | .1         | .067082        | 0 .2314784*                           |
| *) The Wald in <sup>.</sup> | terval was cli | pped at th | e lower endpoi | nt                                    |
| ci fate [freq               | = patients],   | binomial w | ilson          |                                       |
| Variable                    | Obs            | Mean       | Std. Err.      | Wilson<br>[95% Conf. Interval]        |
| +-<br>fate                  | 20             | .1         | .067082        | .0278665 .3010336                     |
|                             |                |            |                |                                       |
|                             |                |            |                |                                       |

| Baseline<br>APACHE II<br>Score | Number<br>of<br>Patients | Number<br>of<br>Deaths | Baseline<br>APACHE<br>II Score | Number<br>of<br>Patients | Number<br>of<br>Deaths |
|--------------------------------|--------------------------|------------------------|--------------------------------|--------------------------|------------------------|
|                                |                          |                        |                                |                          |                        |
| 0                              | 1                        | 0                      | 20                             | 13                       | 6                      |
| 2                              | 1                        | 0                      | 21                             | 17                       | 9                      |
| 3                              | 4                        | 1                      | 22                             | 14                       | 12                     |
| 4                              | 11                       | 0                      | 23                             | 13                       | 7                      |
| 5                              | 9                        | 3                      | 24                             | 11                       | 8                      |
| 6                              | 14                       | 3                      | 25                             | 12                       | 8                      |
| 7                              | 12                       | 4                      | 26                             | 6                        | 2                      |
| 8                              | 22                       | 5                      | 27                             | 7                        | 5                      |
| 9                              | 33                       | 3                      | 28                             | 3                        | 1                      |
| 10                             | 19                       | 6                      | 29                             | 7                        | 4                      |
| 11                             | 31                       | 5                      | 30                             | 5                        | 4                      |
| 12                             | 17                       | 5                      | 31                             | 3                        | 3                      |
| 13                             | 32                       | 13                     | 32                             | 3                        | 3                      |
| 14                             | 25                       | 7                      | 33                             | 1                        | 1                      |
| 15                             | 18                       | 7                      | 34                             | 1                        | 1                      |
| 16                             | 24                       | 8                      | 35                             | 1                        | 1                      |
| 17                             | 27                       | 8                      | 36                             | 1                        | 1                      |
| 18                             | 19                       | 13                     | 37                             | 1                        | 1                      |
| 19                             | 15                       | 7                      | 41                             | 1                        | 0                      |

### 11. Logistic Regression with Grouped Response Data

Suppose that there are  $m_i$  patients with covariate  $x_i$ .

Let  $d_i$  be the number of deaths in these  $m_i$  patients.

Then  $d_i$  has a binomial distribution with mean  $m_i \pi(x_i)$  and hence  $E(d_i/m_i) = \pi(x_i)$ .

Thus the logistic model becomes  $logit(E(d_i/m_i)) = \alpha + \beta x_i$ 



```
Collapse data to one record per APACHE score.
    Calculate observed mortality rate for each score and its
    Wilson 95% confidence interval.
. * Statistics > Other > Collect statistics for a command across a by list
. statsby, by(apache): ci fate [freq=n], binomial wilson
                                                                    {1}
(running ci on estimation sample)
     command: ci fate [fweight= n], binomial wilson
         ub: r(ub)
          lb: r(lb)
         se: r(se)
        mean: r(mean)
          N: r(N)
         by: apache
Statsby groups
----+---- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
```



. list if apache==6 | apache==7 +-----+ apache ub 1b se mean N 6 .4758923 .0757139 .1096642 .2142857 14 7 .6093779 .1381201 .1360828 .3333333 12 6. 7. {2} . generate patients = N . generate p = mean . generate deaths = p\*patients {3} **{2**} There is now only one record for each value of **apache**. The variables N and mean store the number of patients with the specified value of apache and their associated mortality rate, respectively. ub and lb give the Wilson 95% confidence interval for this rate. N.B. All other variables that are not specified by the by option are lost. Do not use this command with data that you value and have not saved! **{3}** deaths give the number of patients with the indicated value of apache who die.

| Generalized                                                   | linear mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | els                                 |            | No.          | of obs                                              | =     | 38                        |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------|--------------|-----------------------------------------------------|-------|---------------------------|
| Optimizatio                                                   | n : ML:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Newton-Raphs                        | son        | Resi         | dual df                                             | =     | 36                        |
| Davianaa                                                      | - 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26705140                            |            | Scal         | e param                                             | =     | 1                         |
| Deviance                                                      | = 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 728/20/5                            |            | (1/d<br>(1/d | <ul> <li>T) Deviance</li> <li>f) Pearson</li> </ul> | -     | 2.343529                  |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |            |              |                                                     |       |                           |
| Variance fu                                                   | nction: V(u)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) = u*(1-u/pa                       | atients)   | [Bin         | omial]                                              |       |                           |
| Link functi                                                   | on • a(u)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | u = ln(u)(nat                       | tionte_u)) | [] 00        | it1                                                 |       |                           |
|                                                               | i g (u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i – In(u/(pat                       | Lienco-u)) | [ 209        |                                                     |       |                           |
| Standard er                                                   | rors : OIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ) – III(u/(pat                      | Lienco-u)) | [209         | 1                                                   |       |                           |
| Standard er<br>Log likelik                                    | rors : $OIM$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .93390578                           |            | AIC          |                                                     | =     | 3.312311                  |
| Standard er<br>Log likelił<br>BIC                             | $\begin{array}{rcl} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$ | .93390578<br>.58605033              | Lienco-u)) | AIC          | ]                                                   | =     | 3.312311                  |
| Standard er<br>Log likelik<br>BIC<br>deaths                   | rors : OIM<br>ood = -60<br>= -46<br>Coef.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .93390578<br>.58605033<br>Std. Err. | z          | AIC<br>P> z  | [95% Cor                                            | =<br> | 3.312311<br><br>Interval] |
| Standard er<br>Log likelik<br>BIC<br>deaths  <br>+-<br>apache | rors : 0IM<br>ood = -60<br>= -46<br>Coef.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .93390578<br>.58605033<br>Std. Err. | z          | AIC          | [95% Cor                                            | =<br> | 3.312311<br>Interval]     |



| predict logodds yb (2)                                               |
|----------------------------------------------------------------------|
| . predict logodds, xb [2]                                            |
| . generate e_prob = exp(logodds)/(1+exp(logodds))                    |
| . label variable e_prob "Expected Mortality at 30 Days"              |
| {2} The linear predictor is logodds = -2.2903 +                      |
| * Calculate 95% confidence region for e_prob                         |
| . predict stderr, stdp                                               |
| . generate lodds_lb = logodds - 1.96*stderr                          |
| . generate lodds_ub = logodds + 1.96*stderr                          |
| <pre>. generate prob_lb = exp(lodds_lb)/(1+exp(lodds_lb))</pre>      |
| . generate prob_ub = exp(lodds_ub)/(1+exp(lodds_ub))                 |
| . label variable p "Observed Mortality Rate"                         |
| . * Data > Describe data > List data                                 |
| . list p e_prob prob_lb prob_ub ci95lb ci95ub apache if apache == 20 |
| ++<br>  p e prob prob lb prob ub lb ub apache                        |
|                                                                      |
| 20.   .4615385 .505554 .4462291 .564723 .2320607 .708562 20          |
| Tt                                                                   |
|                                                                      |
|                                                                      |

/// twoway rarea prob\_ub prob\_lb apache, color(yellow) scatter p apache, color(blue) 111 > rcap ub lb apaché, color(blué) /// {3} || line e\_prob apache, yaxis(2) clwidth(medthick) color(red) > /// > > ylabel(0(.2)1,labcolor(blue) angle(0)) /// {4} , ytick(0(.1)1, tlcolor(blue)) /// {5} > > ylabel(0(.2)1, axis(2) labcolor(red) angle(0)) /// {6} ytick(0(.1)1, axis(2) tlcolor(red)) 111 > xlabel(0(5)40) xtick(0(1)40) 111 > ytitle(,axis(2) color(red)) 111 > ytitle(Observed Mortality Rate, color(blue)) 111 > legend(order(1 "95% CI from model" 2 3 "95% CI from this obs." 4)) {3} rcap plots capped rods (error bars) joining the values of ub and lb for each value of apache. **{4}** This graph will have two y-axes: a left-axis for the observed mortality rate and a right-axis for the expected morbidity rate. Here we color the default (left) axis blue to match the blue scatterplot of observed mortality rates. Also, color the tick lines blue on the left axis. **{5} {6}** The axis(2) suboption indicates that this ylabel option refers to the right axis. It is colored red to match the expected mortality curve.



| Plots if/in Yaxis Xa                                                                                                                            | xis   Titles   Legend   Overall   By                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Plot definitions:<br>Plot 1<br>Plot 2<br>Plot 3<br>Plot 4<br>Plot 4<br>Plot 4<br>C Use default rule<br>C Use default rule<br>C Use default rule | Create. Plots if/n Y avis X axis Tilk Edit Disate Enable Move Ut Move Dov Reference lines Iabel properties (y axis) X d | graphs       Image: Second Control of the second |
| C Min Max<br>C Lustom<br>C None<br>The axis rule determines th                                                                                  | e number of ticks and their relative positions.                                                                         | Show ticks: Default                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Plots         | woway - Twow                 | Plots if/in Yaxis X                          | voway graphs<br>(axis   Titles   Legend   Overall   By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |                  |
|---------------|------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|
| Diak          | deferition of                | Title:                                       | Properties for second secon | ond y axis                  | ×                |
| Plot          | 1<br>2                       | Observed Mortality Rate                      | Title:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |                  |
| ine Plot      | 3                            | <ul> <li>Major tick/label propert</li> </ul> | tir J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             | Properties       |
|               |                              | Axis line properties                         | Major tick/label properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Minor tick/label properties |                  |
|               |                              | Reference lines                              | - Axis line properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 📕 Axis tick an              | d label properti |
|               |                              | Hide axis                                    | Reference lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bule Labels Ticks           | Grid             |
|               | _                            | Place axis on opposite                       | s Hide axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ticks                       | 1 1              |
| (line         | e prob apache,)              | Edit second y axis                           | Place axis on opposite side of gra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | aph Sho                     | w ticks: Default |
|               | 1 11 1 1                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | → L                         | Color: Red       |
|               | ck and label pi              | roperties (y avie                            | Axis tick and label p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | operties (v axis)           | X                |
| Rule Labels   | Ticks Grid                   |                                              | de Labels Ticks Guid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                  |
| Axis rule     |                              |                                              | are assess they and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                  |
| C Use defa    | ault rule                    |                                              | Labels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | C Default        |
| C Suggest     | # of ticks                   | 0 Minimum                                    | Show labels: Default                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>•</u>                    |                  |
| Range/I       | Delta                        | 1 Maximum                                    | > Color: Red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>*</b>                    |                  |
| C Custom      |                              | 0.2 Delta                                    | Size:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                           |                  |
| C None        |                              |                                              | Angle: Zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                           |                  |
| The wie ule   | determines the number of tic | ke and their relative positio                | Label gap:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                  |
| The dats full | determines are number of the | into and their relative positio              | Format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | Accept           |
|               |                              |                                              | roma. j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                    |                  |
|               |                              |                                              | Use value labels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                  |
|               |                              |                                              | Alternate spacing of adjacent labels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                  |
| 00            | - Acc                        | ent Cancel                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                  |
|               |                              |                                              | B Acc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ent Cancel Submit           |                  |





The **blue** error bars in the regression graph give 95% confidence intervals that are derived from the observed mortality rates at each separate APACHE II score. These confidence intervals are not given for scores with zero or 100% mortality. The **yellow shaded region** gives 95% confidence intervals for the expected mortality that are derived from the entire logistic regression.

Overall, the fit appears quite good, although the regression curve comes close to the ends of the confidence intervals for some scores and is just outside when the APACHE score equals 18.



| histogram - Histograms<br>Main it/n Weight Density plots Add plo<br>Data<br>Variable: C Data are c | for continuous and categori  The second overall By second overa |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bar properties                                                                                     | Crete  Y axis  Density  Fraction  Frequency  Percent  Add height labels to bars  Bit label properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 00                                                                                                 | histogram - Histograms for continuous and categori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -                                                                                                  | riequency weight.<br>→ palients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                    | C Cancel Submit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



| 12. a)                           | Simple 2x2 Case-<br>Example: Esoph                                                     | -Control Stue                                     | <mark>dies</mark><br>r and Alcol                    | hol                                        |                         |
|----------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|--------------------------------------------|-------------------------|
| Breslov<br>Vilaine<br>al. 197    | w & Day, Vol. I (19<br>e case-control stud<br>77) .                                    | 980) give the f<br>y of <mark> esophagea</mark>   | ollowing rest<br>al cancer and                      | ults from t<br>d <mark>alcohol</mark> (1   | he Ille-et-<br>Fuyns et |
| <mark>Cases</mark> w<br>hospital | vere <mark>200</mark> men diagr<br>ls between 1/1/1972                                 | nosed with eso<br>2 and 4/30/197                  | phageal can<br>74.                                  | cer in regi                                | onal                    |
| Control                          | s were <mark>775</mark> men dr                                                         | awn from elec                                     | toral lists in                                      | each com                                   | nune.                   |
| Control                          | s were <mark>775</mark> men dr<br>Esophageal                                           | awn from elec Daily Alco                          | toral lists in                                      | each com                                   | nune.                   |
| Control                          | s were <mark>775</mark> men dr<br>Esophageal<br>Cancer                                 | awn from elec<br>Daily Alco<br><u>&gt;</u> 80g    | toral lists in<br>hol Consur<br>< 80g               | each comi<br>mption<br>Total               | nune.                   |
| Control                          | s were <mark>775</mark> men dr<br>Esophageal<br>Cancer<br>Yes (Cases)                  | awn from elec<br>Daily Alco<br>≥ 80g<br>96        | toral lists in<br>hol Consur<br>< 80g<br>104        | nption<br>Total                            | nune.                   |
| Control                          | s were <mark>775</mark> men dr<br>Esophageal<br>Cancer<br>Yes (Cases)<br>No (Controls) | awn from elec<br>Daily Alco<br>≥ 80g<br>96<br>109 | toral lists in<br>hol Consur<br>< 80g<br>104<br>666 | each comm<br>mption<br>Total<br>200<br>775 | nune.                   |

b) Review of Classical Case-Control Theory
Let m<sub>i</sub> = number of cases (i = 1) or controls (i = 0)
d<sub>i</sub> = number of cases (i = 1) or controls (i = 0) who are heavy drinkers.
Then the observed prevalence of heavy drinkers is d<sub>0</sub>/m<sub>0</sub> = 109/775 for controls and d<sub>1</sub>/m<sub>1</sub> = 96/200 for cases.
The observed prevalence of moderate or non-drinkers is (m<sub>0</sub> - d<sub>0</sub>)/m<sub>0</sub> = 666/775 for controls and (m<sub>1</sub> - d<sub>1</sub>)/m<sub>1</sub> = 104/200 for cases.

## February 15, 2011

## MPH Program, Biostatistics II W.D. Dupont

The observed odds that a case or control will be a heavy drinker is
(d<sub>i</sub> / m<sub>i</sub>) / [(m<sub>i</sub> - d<sub>i</sub>) / m<sub>i</sub>] = d<sub>i</sub> / (m<sub>i</sub> - d<sub>i</sub>)
= 109/666 and 96/104 for controls and cases, respectively.
The observed odds ratio for heavy drinking in cases relative to controls is

\$\u03c0 = \frac{d\_1 / (m\_1 - d\_1)}{d\_0 / (m\_0 - d\_0)} = \frac{96/104}{109/666} = 5.64

If the cases and controls are a representative sample from their respective underlying populations then

\$\u03c0 \u03c0 is an unbiased estimate of the true odds ratio for heavy drinking in cases relative to controls in the underlying population.

This true odds ratio also equals the true odds ratio for esophageal cancer in heavy drinkers relative to moderate drinkers.
Case-control studies would be pointless if this were not true.



13. Logistic Regression Models for 2x2 Contingency Tables Consider the logistic regression model  $logit(E(d_i / m_i)) = \alpha + \beta x_i$ {3.9} where  $E(d_i / m_i) = \pi_i$  = Probability of being a heavy drinker for cases (i = 1) and controls (i = 0). and  $x_i = \begin{cases} 1 = \text{ cases} \\ 0 = \text{ for controls} \end{cases}$ Then {3.9} can be rewritten  $logit(\pi_i) = log(\pi_i / (1 - \pi_i)) = \alpha + \beta x_i$ Hence  $\log(\pi_1 / (1 - \pi_1)) = \alpha + \beta x_1 = \alpha + \beta$  $\log(\pi_0 / (1 - \pi_0)) = \alpha + \beta x_0 = \alpha$ since  $x_1 = 1$  and  $x_0 = 0$ . Subtracting these two equations gives  $\log(\pi_1 / (1 - \pi_1)) - \log(\pi_0 / (1 - \pi_0)) = \beta$  $\log\left[\frac{\pi_1/(1-\pi_1)}{\pi_0/(1-\pi_0)}\right] = \log(\psi) = \beta \quad \text{and hence the true odds ratio } \psi = e^{\beta}$ 



|                                                                  | L                                                                                       |                                                                                     |                                                                  |      |            |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------|------|------------|
|                                                                  | cancer a                                                                                | alcohol                                                                             | patients                                                         |      |            |
| 1.                                                               | 0                                                                                       | 0                                                                                   | 666                                                              |      |            |
| 2.                                                               | 1                                                                                       | 0                                                                                   | 104                                                              |      |            |
| 3.                                                               | 0                                                                                       | 1                                                                                   | 109                                                              |      |            |
| 4.                                                               | 1                                                                                       | 1                                                                                   | 96                                                               |      |            |
| lab                                                              | el define v                                                                             | esno 0 "M                                                                           | lo" 1 "Yes"                                                      |      | {2}        |
|                                                                  | · · · · · · · · · · · · · · · · · · ·                                                   |                                                                                     |                                                                  |      |            |
|                                                                  |                                                                                         |                                                                                     |                                                                  |      |            |
| lab                                                              | el values ca                                                                            | ancer yes                                                                           | ino                                                              |      | {3}        |
| lab<br>lab                                                       | el values ca<br>el define do                                                            | ancer yes<br>ose 0 "<                                                               | no<br>80g" 1 ">= 8                                               | ia " | {3}        |
| lab<br>lab                                                       | el values ca<br>el define do                                                            | ancer yes<br>ose O "<                                                               | :no<br>80g" 1 ">= 8                                              | ıg " | {3}        |
| labo<br>labo<br>labo                                             | el values ca<br>el define de<br>el values ai                                            | ancer yes<br>ose O "<<br>Lcohol do                                                  | :no<br>80g" 1 ">= 8<br>:se                                       | Ig " | {3}        |
| lab<br>lab<br>lab                                                | el values ca<br>el define do<br>el values a:<br>t                                       | ancer yes<br>ose O "<<br>lcohol do                                                  | no<br>80g" 1 ">= 8<br>se                                         | Ig " | {3}        |
| labo<br>labo<br>labo<br>labo<br>lis <sup>-</sup>                 | el values ca<br>el define de<br>el values a:<br>t<br>cancer a                           | ancer yes<br>ose O "<<br>lcohol do<br>alcohol                                       | no<br>80g" 1 ">= 8<br>se<br>patients                             | 'g " | {3}<br>{4} |
| labo<br>labo<br>labo<br>lis <sup>.</sup><br>1.                   | el values ca<br>el define de<br>el values a<br>t<br>cancer a<br>No                      | ancer yes<br>ose 0 "<<br>lcohol do<br>alcohol<br>< 80g                              | no<br>80g" 1 ">= 8<br>se<br><u>patients</u><br>666               | 'g " | {3}<br>{4} |
| labo<br>labo<br>labo<br>lis <sup>:</sup><br>1.<br>2.             | el values ca<br>el define de<br>el values a<br>t<br>cancer a<br>No<br>Yes               | ancer yes<br>ose 0 "<<br>lcohol do<br>alcohol<br>< 80g<br>< 80g                     | no<br>80g" 1 ">= 8<br>se<br><u>patients</u><br>666<br>104        | 'g " | {3}<br>{4} |
| labo<br>labo<br>labo<br>lis <sup>-</sup><br>1.<br>2.<br>3.       | el values ca<br>el define de<br>el values a<br>t<br>cancer a<br>No<br>Yes<br>No         | ancer yes<br>ose 0 "<<br>lcohol do<br>alcohol<br>< 80g<br>< 80g<br>>= 80g           | no<br>80g" 1 ">= 8<br>se<br><u>patients</u><br>666<br>104<br>109 | 'g " | {3}<br>{4} |
| labo<br>labo<br>labo<br>lis <sup>-</sup><br>1.<br>2.<br>3.<br>4. | el values ca<br>el define de<br>el values a:<br>t<br>cancer a<br>No<br>Yes<br>No<br>Yes | ancer yes<br>ose 0 "<<br>lcohol do<br>alcohol<br>< 80g<br>< 80g<br>>= 80g<br>>= 80g | no<br>80g" 1 ">= 8<br>patients<br>666<br>104<br>109<br>96        | Ig " | {3}<br>{4} |





| {5}                    | Perform a <b>classical</b> case-control <b>analysis</b> of the data in the 2x2 table defined by <i>cancer</i> and <i>alcohol</i> . [ <i>freq=patients</i> ] gives the number of patients who have the specified values of <i>cancer</i> and <i>alcohol</i> . The <b>woolf</b> option specifies that the 95% confidence interval for the odds ratio is to be calculated using Woolf's method. |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | We could have entered one record per patient giving<br>666 records with cancer = 0 and alcohol = 0,                                                                                                                                                                                                                                                                                          |
|                        | 104 records with cancer = 1 and alcohol = 0,<br>109 records with cancer = 0 and alcohol = 1, and<br>96 records with cancer = 1 and alcohol = 1.                                                                                                                                                                                                                                              |
|                        | Then the command<br>cc cancer alcohol, woolf                                                                                                                                                                                                                                                                                                                                                 |
|                        | would have given exactly the same results as those shown in this example.                                                                                                                                                                                                                                                                                                                    |
| N.B.<br>recor<br>regre | We need to use the <b>[freq=patients]</b> command modifier whenever each of represents multiple patients. This will also be true in logistic ession and other commands.                                                                                                                                                                                                                      |
|                        | 96/10/                                                                                                                                                                                                                                                                                                                                                                                       |



| gistic regres | sion        |           |      | Numbe<br>LR ch | r of obs<br>i2(1) | =<br>= | 975<br>96.43 |
|---------------|-------------|-----------|------|----------------|-------------------|--------|--------------|
| g likelihood  | = -453.2224 | 1         |      | Prob<br>Pseud  | > chi2<br>o R2    | =      | 0.0000       |
| alcohol       | Coef.       | Std. Err. | Z    | P> z           | [95% Co           | onf.   | Interval]    |
| cancer        | 1.729899    | .1752366  | 9.87 | 0.000          | 1.38644           | 12     | 2.073356     |
|               |             |           |      |                |                   |        |              |
|               |             |           |      |                |                   |        |              |
|               |             |           |      |                |                   |        |              |

Г

| If we l                            | nad ente                | red the                       | data as                       | r of the second s |
|------------------------------------|-------------------------|-------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | cancer                  | heavy                         | patients                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                    | 0                       | 109                           | 775                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                    | 1                       | 96                            | 200                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Then                               | we would                | d have a                      | chieved t                     | he same analysis with the command                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ç                                  | <mark>glm</mark> heavy  | / cancer,                     | , family(b                    | inomial patients) link(logit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Both o                             | of these o              | comman                        | ds fit the                    | model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1                                  | ogit(E(a                | lcohol))                      | $= \alpha + can$              | cer*β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| giving<br>cancer<br><b>0.175</b> 2 | β = 1.7<br>patient<br>2 | 7 <b>3 =</b> the<br>ts relati | log odd<br>ve to cor          | <b>s ratio</b> of being a heavy drinker in $trols$ . The <b>standard error</b> of $\beta$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| The o                              | dds rati                | o is exp                      | (1.73) = 8                    | 5.64.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| The <b>9</b><br>exp(1.             | 5% conf<br>73 ±1.96     | <b>idence</b><br>*0.1752      | <b>interval</b><br>) = (4.00, | for the odds ratio is<br>7.95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Dependent variable:<br>alcohol                                                              | x<br>t term                                                                                                                                     |                          |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Retain perfect predictor variables Constraints:      Keep collinear variables (rarely used) | logit - Logistic regression,     Model by/i/in Weights SE/Robust Reporting     Weight type:     None     Frequency weights     Sampling weights | , reporting coefficients |
|                                                                                             | C Importance weights (rare) Frequency weight: patients                                                                                          | ×                        |

| 5       LR chi2(1) = 96.43<br>Prob > chi2= 0.0000         9 likelihood = -453.2224       Pseudo R2 = 0.0962         Lcohol   Odds Ratio Std. Err. z P> z  [95% Conf. Interval         cancer   5.640085       .9883491         9.87       0.000         4.000589       7.95146 | gistic r                  | egression                                 |                           | Juciencoj  |              | No. of o       | bs =      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------|---------------------------|------------|--------------|----------------|-----------|
| Lcohol   Odds Ratio Std. Err. z P> z  [95% Conf. Interval<br>cancer   5.640085 .9883491 9.87 0.000 4.000589 7.95146                                                                                                                                                            | '5<br>Ll<br>P<br>g likeli | R chi2(1) =<br>rob > chi2=<br>hood = -453 | 96.43<br>0.0000<br>5.2224 | Pseudo R2  | = 0.0962     |                |           |
| cancer   5.640085 .9883491 9.87 0.000 4.000589 7.95146                                                                                                                                                                                                                         | lcohol                    | Odds Ratio                                | Std. Err.                 | z          | P> z         | [95% Conf.     | Interval] |
| (9) The logistic common development the odds action and its confidence                                                                                                                                                                                                         | cancer                    | 5.640085                                  | .9883491                  | 9.87       | 0.000        | 4.000589       | 7.951467  |
| (o) The <i>logistic</i> command calculates the odds ratio and its confidence interval directly.                                                                                                                                                                                | <b>{8}</b>                | The <i>logistic</i><br>interval dire      | command<br>ctly.          | calculates | the odds rat | tio and its co | onfidence |

| Model   Byvilvin Weights SE/Robust   Rep | ting   Maximization                                                                        | 1                    |
|------------------------------------------|--------------------------------------------------------------------------------------------|----------------------|
| Dependent variable: Independent vari     | bles:                                                                                      |                      |
| Options<br>Offset variable:              |                                                                                            |                      |
| Constraints:                             | logistic - Logistic regression,                                                            | reporting odds r 💶 🗖 |
|                                          | Model by/if/in Weights SE/Robust Reporting Maxim                                           | nization             |
| Keep collinear variables (rarely used)   | Weight type:<br>None<br>Frequency weights<br>Sampling weights<br>Importance weights (rare) | Help weights         |
| 00                                       | Prequency weight     patients                                                              |                      |
|                                          |                                                                                            |                      |
|                                          |                                                                                            | OK Canad Submit      |



The 95% confidence interval is

 $(5.64\exp(-1.96 \times 0.1752), 5.64\exp(1.96 \times 0.1752)) = (4.00, 7.95).$ 

The classical limits using Woolf's method is

 $(5.64\exp(-1.96 \times s), 5.64\exp(1.96 \times s)) = (4.00, 7.95),$ 

where  $s^2 = 1/96 + 1/109 + 1/104 + 1/666 = 0.0307 = (0.1752)^2$ .

Hence Logistic regression is in exact agreement with classical methods in this simple case.

gives us Woolf's 95% confidence interval for the odds ratio. We will cover how to calculate confidence intervals using glm in the next chapter.

### 15. Regressing Disease Against Exposure

The simplest explanation of simple logistic regression is the one given above. Unfortunately, it does not generalize to multiple logistic regression where we are considering several risk factors at once. In order to make the next chapter easier to understand, let us return to simple logistic regression one more time.

Suppose we have a population who either are or are not exposed to some risk factor.

Let  $\pi'_j$  denote the true probability of disease in exposed (j = 1) and unexposed (j = 0) people.

We conduct a case-control study in which we select a **representative** sample of diseased (case) and healthy (control) subjects from the underlying population. That is, the selection is done in such a way that the probability that an individual is **selected** is **unaffected** by her exposure status.

Let  $m_j$  be the number of study subject who are (j = 1) or are not (j = 0) exposed,

 $d_i$  be the number of cases who are (j = 1) or are not (j = 0) exposed,

- $x_i = j$  denote exposure status, and
- $\pi_j$  be the probability that a study subject is a case given that she is (j=1) or is not (j=0) exposed.

Consider the model

logit  $(E(d_i / m_i)) = \alpha + \beta x_i$ 

This is a legitimate logistic regression model with  $E(d_j / m_j) = \pi_j$ . It can be shown, however, that this model can be rewritten as

 $logit(\pi'_j) = \alpha' + \beta x_j$ 

where  $\alpha'$  is a different constant. However, since  $\alpha'$  cancels out in the odds ratio calculation,  $\beta$  estimates the log odds ratio for disease in exposed vs. unexposed members of the population as well as in our case-control sample.

Thus in building logistic regression models it makes sense to regress disease against exposure even though we have no estimate of the probability of disease in the underlying population.



### **Cited References**

Bernard, G. R., et al. (1997). The effects of ibuprofen on the physiology and survival of patients with sepsis. The Ibuprofen in Sepsis Study Group. N Engl J Med 336: 912-8.

Breslow, N. E. and N. E. Day (1980). Statistical Methods in Cancer Research: Vol. 1 - The Analysis of Case-Control Studies. Lyon, France, IARC Scientific Publications.

Tuyns, A. J., G. Pequignot, et al. (1977). Le cancer de L'oesophage en Ille-et-Vilaine en fonction des niveau de consommation d'alcool et de tabac. Des risques qui se multiplient. *Bull Cancer* 64: 45-60.

#### For additional references on these notes see.

Dupont WD. Statistical Modeling for Biomedical Researchers: A Simple Introduction to the Analysis of Complex Data. 2nd ed. Cambridge, U.K.: Cambridge University Press; 2009.