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1. Simple Logistic Regression
a) Example: APACHE II Score and Mortality in Sepsis

The following figure shows 30 day mortality in a sample of septic
patients as a function of their baseline APACHE II Score.
Patients are coded as 1 or 0 depending on whether they are dead
or alive in 30 days, respectively.
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We wish to predict death from baseline APACHE II score in these
patients.

Let n(x) be the probability that a patient with score x will die.

Note that linear regression would not work well here since it could
produce probabilities less than zero or greater than one.

b) Sigmoidal family of logistic regression curves
Logistic regression fits probability functions of the following form:

n(x) = exp(o +Px)/ (1 + exp(a + Bx)) {3.1}

This equation describes a family of sigmoidal curves, three examples of
which are given below.

n(x) = exp(a +Bx)/ (1 + exp(a + Bx))
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c) Parameter values and the shape of the regression curve

For now assume that f > 0.

For negative values of x, exp(a+px)—>0 asx —> —o©

and hence m(x)—> 0/(1+0)=0

For very large values of x, exp(a + px) — c© and hence
n(x) > o/(1+ o) =1

‘When x=-a/p, o+Ppx=0 and hence n(x)=1/(1+1)=05 ‘

‘ The slope of n(x) when n(x)=.5 is p/4. ‘

‘ Thus B controls how fast n(x) rises from 0 to 1. ‘

‘ For given B, a controls were the 50% survival point is located.

We wish to choose the best curve to fit the data.

Data that has a sharp survival cut off point between patients who live
or die should have a large value of p.

Died 1

Survived 0
0 5 10 15 20 25 30 35 40
X

Data with a lengthy transition from survival to death should have a low
value of B.
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d) The probability of death under the logistic model
This probability is
n(x) = exp(a + Bx)/ (1+exp(a + Bx))

Hence 1-m(x) = probability of survival

_ 1+exp(a+px)—exp(a+Px)
- 1+ exp(a + Bx)

=1/(1+exp(a +Bx)) , and the odds of death is
n(x)/(1 - m(x)) = exp(ot + px)

The log odds of death equals
log(n(x)/(1-n(x)) = o+ Px (3.2}

e) The logit function
For any number n between 0 and 1 the logit function is defined by

logit(r) = log(r/ (1 1))

Let d. = 1: i*® patient dies
" |0: i* patient lives

x, be the APACHE II score of the i*h patient

Then the expected value of d; is
E(d;) = n(x;)

Thus we can rewrite the logistic regression equation {3.1} as

logit(E(d;)) = o + Bax; {3.3}
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2. The Binomial Distribution

Let
m be the number of people at risk of death
d be the number of deaths
7 be the probability that any patient dies.

The death of one patient has no effect on any other.

Then d has a binomial distribution with

parameters m and =,
mean mm, and

variance mmn(l-w).

Pr[d deaths]

_ m!

= m am N .4 _0q... (3.4}
m—d)ld! 7°(l-7) :d=0,1---,m

The population mean of any random variable x is also equal to its
expected value and is written E(x). Hence

E(d)=nm and E(d/m)=n

For m =12 and = = 0.25 this distribution is as follows.

0.25
Binomial Distribution
0.2
2 n=12, ©=0.25
= 0.15
S
& 0.1

0.05

012 3 45 6 7 8 9 1011 12
Number of Deaths
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A special case of the binomial distribution is when m = 1, which is
called a Bernoulli distribution.

In this case we can have 0 or 1 deaths with probability 1-n and
wT, respectively.

The complete logistic regression model for the sepsis data is
specified as follows

d; has a binomial distribution with 0 or 1 failures and probability of
failure n(x;) = E(d;)

E(d) is determined by logit (E(d,)) = a + Bx;

3. Generalized Linear Models

Logistic regression is an example of a generalized linear model.
These models are defined by three attributes: The distribution of
the model’s random component, its linear predictor, and its link
function. For logistic regression these are defined as follows.
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a) The random component
d; is the random component of the model. In logistic regression, d,

has a binomial distribution obtained from m;, trials with mean E(d,).
(In the sepsis example, m; = 1 for all i.)

Stata refers to the distribution of the random component as
the distributional family.

b) The linear predictor

o + x; B is called the linear predictor

c) The link function

E(d) is related to the linear predictor through a link function.
Logistic regression uses a logit link function

logit(E(d)) = o + x; B

4. Contrast Between Logistic and Linear Regression

In linear regression, the expected value of y; given x; is

E(y;)=a+Bx; for i=1,2,..,n

¥i has a normal distribution with standard deviation c.

¥; is the random component of the model, which has a
normal distribution.

o+ B is the linear predictor.

The link function is the identity function E(y;)= I(E(y,).

5.  Maximum Likelihood Estimation

In linear regression we used the method of least squares to estimate
regression coefficients.

In generalized linear models we use another approach called
maximum likelihood estimation.
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Suppose that 5 of 50 AIDS patients die in one year. We wish to
estimate m, the probability of death for these patients.

We assume that the number of deaths has a binomial distribution
obtained from m= 50 patients with probability of death = for each
patient.

Let L(n | d = 5) be the probability of the observed outcome (5) given
different values of .

L(n |d =5) is called a likelihood function and looks like this.

& 0.2 o )

7 Likelihood Function for a
< ] Binomial Distribution Given
S 0.16 : -
] that 5 of 50 Patients Die
& 0.121

T

< 0.081 Maximum likelihood
2 Estimate of

S 0.047

o)

[

o 0 et

0 005 01 015 02 025 03 035
Probability = that Any Individual Patient Dies

The maximum likelihood estimate of & is the value of © that assigns
the greatest probability to the observed outcome.

In this example, 7 = 0.1
Note that if 1 =7 = 0.1 that E(d) =50x0.1=5=d

Thus, in this example, the maximum likelihood estimate of © is that value
that sets the expected number of deaths equal to the observed number of
deaths.

In general, maximum likelihood estimates do not have simple closed
solutions, but must be solved interactively using numerical methods.
This, however, is not a serious drawback given ubiquitous and powerful
desktop computers.

a) Variance of maximum likelihood parameter estimates

It can be shown that when a maximum likelihood estimate is based
on large number of patients, its variance is approximately equal to

-1/C, where C is the expected curvature of the likelihood surface
at @
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6. Logistic Regression with glm

a) Example: APACHE II score and mortal outcome

4.11.Sepsis.log

*

*

* Simple logistic regression of mortal status at 30 days (fate) against

* paseline APACHE II score (apache) in a random sample of septic patients
*

. use C:\\WDDtext\4.11.Sepsis.dta, clear
. summarize fate apache

Variable | Obs Mean Std. Dev. Min Max
_____________ oo e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e me e em e mm————————
fate | 38 .4473684 .5038966 0 1
apache | 38 19.55263 11.30343 0 41
. codebook
Apache ------cmem e APACHE II Score at Baseline
type: numeric (byte)
range: [0,41] units: 1
unique values: 38 coded missing: O / 38
mean: 19.5526
std. dev: 11.3034
percentiles: 10% 25% 50% 75% 90%
4 10 19.5 29 35
fate -------------ie - Mortal Status at 30 Days
type numeric (byte)
label fate
range: [0,1] units: 1
unique values: 2 coded missing: O / 38
tabulation: Freq. Numeric Label
21 0 Alive
17 1 Dead
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. glm fate apache, family(binomial) link(logit) {1}
Iteration 0O log likelihood = -15.398485
Iteration 1 log likelihood = -14.9578
Iteration 2: log likelihood = -14.956086
Iteration 3 log likelihood = -14.956085
Generalized linear models No. of obs = 38
Optimization : ML: Newton-Raphson Residual df = 36
Scale param = 1
Deviance = 29.91217061 (1/df) Deviance = .8308936
Pearson = 66.34190718 (1/df) Pearson = 1.842831
Variance function: V(u) = u*(1-u) [Bernoulli] {2}
Link function :g(u) = 1In(u/(1-u)) [Logit]
Standard errors : OIM
Log likelihood = -14.95608531 AIC = .8924255
BIC = -101.0409311
fate | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_________ o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m e —— e
apache |  .2012365 .0608998 3.304 0.001 .0818752 .3205979
_cons | -4.347807 1.371609 -3.170  0.002 -7.036111  -1.659503
. predict logodds, xb {3}
. generate prob = exp(logodds)/(1 + exp(logodds)) {4}
. list apache fate logodds prob in 1/3 {5}

{1} This gim command regresses fate against apache using a
generalized linear model. The family and link options specify that
the random component of the model is binomial and the link
function is logit. In other words, a logisitic model is to be used.

{2} When there is only one patient per record Stata refers to the
binomial distribution as a Bernoulli distribution. Along with the
logit link function this implies a logisitc regression model.

{8} The xb option of the predict command specifies that the linear
predictor will be evaluated for each patient and stored in a
variable named logodds.

Recall that predict is a post estimation command whose meaning
is determined by the latest estimation command, which in this
example is glm.

{4} prob equals the estimated probability that a patient
will die. It is calculated using the equation
n(x) = exp(a +Px)/ (1+exp(a + Px))

{6} The in modifier specifies that the first
through third record are to be listed.
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1ol
Model | Model 2 | byif/in| Weights | SE/Robust| Fiepaiting | Masinizalion |
Dependent variable: Independent variables:
—p|iate =] =] apache =l
Family and Inverse Negative
link choices: Gaussian | Gaussian Binomial Poisson binomial Gamma
\dentity| € r » r » .
Lng‘ c | e e . | » s
Logi| | © [
Probit| | » |
C. loglog \ ] | c
Power| s [ ® » I c
Odds power | [
Neg. binom. i
Loglog *
Log-comp. c
Bemoulitids (i [ 1] Constamt O [ | Vaisble
@0 = 0K Cancel | Submit

. predict logodds, xb

{3}

variable named logodds.

example is glm.

{38} The xb option of the predict command specifies that the linear
predictor will be evaluated for each patient and stored in a

Recall that predict is a post estimation command whose meaning
is determined by the latest estimation command, which in this

B8 predict - Predictio|

Mein |/ | Options|

New variable name:

—plogodds

Produce:
 Predicted mean of y=g_inverse(sb]
@ Linear prediction 1)

" Standaid eror of the linear pred.
" Anscombe residuals

" Cook's distance

" Deviance residuals

€ Diagonals of the hat matrix
€ Likelihood residuals

" Pearson residuals

" Response residuals

" Score residuals

" Working residuals

90

o ]

Cancel |

sumt |
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. generate prob = exp(logodds)/(1 + exp(logodds)) {4}
. * Data > Describe data > List data
. list apache fate logodds prob in 1/3 {5}

{4} prob equals the estimated probability that a patient
will die. It is calculated using equation 3.1.

{5} The in modifier specifies that the first
through third record are to be listed.

HH list - List values of variables ol x|
Main (by/it/n [Yaptions | Summary | Advanced |

Variables: (leave emply for all variables]
= [apache fate logodds protf =l _]

|~ Column widths
& Defauk
 Compress width of columns in both table and display formats
C Use display fomal of each variable

™ Override minimum abbrevistion of variable names

8==] Cheracters

By o I list - List values of variables — =]

10— Characters Main tyfiffn1npﬁw| Summary | Advanced |

~1" Repeat command by groups
I"" Do not list observation numbers

Jarzbles that define aroups

e ' =)

- Restrict ob:

IF. (expression]

@Use arange of observations
From: 1 EZ to: ;Z{E

Creale...

9 0l [ oKk | Comcel | submt

3: Simple logistic regression 3.12



MPH Program, Biostatistics 11 February 15, 2011

W.D. Dupont

apache  fate logodds prob
1. 16 Alive -1.128022 .2445263 {6}
2. 25 Dead .6831065 .6644317
3. 19 Alive -.5243126 .3718444
. sort apache
. * Variables Manager
. label variable prob “Probability of Death” {7}

| {7} Assign the label Probability of Death to the variable prob. |

{6} The first patient has an APACHE II score of 16. Hence the
estimated linear predictor for this patient is logodds = o + x, =
_cons + 16xapache = -4.3478 + 16x0.2012 = -1.1286. The second
patient has apache = 25 giving logodds = -4.3478 + 25x0.2012 =
0.6831.

For the first patient
prob = exp(a +Bx)/(1+exp(a + px))
= exp(logodds)/(1+ exp(logodds))
= exp(-1.128)/(1+exp(-1.128)) = 0.2445

&l Stata/SE 11.0 - C:\WDDtext\4.11.Sepsis.dta - [Results] o =13}
File Edit Data Graphics Statistics User Window Help g
Ju‘dﬁz_]ﬂ'J_*iﬁ';’f_‘x@ )
[Famaralisad Tinasr madaTs Oy Ak - 20 1
@f | Bl Variables Manager =10]x|
1 * | Enter filter text here
2 *
3 «| Draga column header here to group by that column,
4 i N
5 « | # Yariable Label Type Format Value Label Notes I;::
6 w| apache APACHE 1 Score at Basel... byte %8.0g
7 £ Label
B b fate Mortal Status at 30 Days  byte %8.09 fate Al " Probabiiey of Dot
5 g logodds Linear prediction float %0.0g
T:
I (D) float %0.0g :;::r -
11 [+
« I Format
“%9.09 Create...
—
GiE Value Label
apache =] _Manage... |
fate hotes
logodds No notes Manage...
prob
<> Reset | ooty |
[ —
C:\MyDoc
Ready ‘ Vars:4 CAF NUM /=I
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are to be used. That is, Alive

and Dead.

. scatter fate apache 111

> , ylabel(0 1, valuelabel angle(0)) yscale(titlegap(-8)) /// {8,9}

> || 1line prob apache, yaxis(2) xlabel(0(10)40) {10}
{8} wvaluelabel and angle are suboptions of the ylabel option. The labels for

the y-axis are at 0 and 1. valuelabel indicates that the value labels of fate

angle specifies the angle at which the labels are written; an angle of 0
means that the labels will be written parallel to the x-axis.

{9} yscale(titlegap(-8)) specifies how close the title of the y-axis is to the
axis itself. The default, titlegap(0) would place the title just to the
left of the labels Dead and Alive.

{10} yaxis(2) indicates that the y-axis for the graph of prob vs.
apache is to be drawn on the right.

[~ Axis nle
€ Use default ule
" Suggest # of ticks
 Range/Delta
 Min Max
@f.uslom
€ None

90

Custom ule:
=01

The axis rule detemines the number of ticks and their relative position

ﬂ m Cancel l ||

B twoway - Twoway graphs =10 x|
Plote | it/in Xaxis]Tl!Iet | Legend| Overal | By | !
Plot definkions: B twoway - Twoway graphs B =]
Create...
#‘ Plots | #fn Y auis |Xavis | Tiles | Legend| Overall| By |
Scatter plot Disable Tile:
of fate by | Propetties |
apache
||| ey | [
Asis line properties | Asis scale properties |
B Axis tick and label properties x| ‘
[scatter . - -
Rule Ticks | Grid
G 5 | |

Rule  Labels | Ticks | Giid |

[ Labels

Showlebels: [Defaut =]

Color: m

. —

= Angle: [Zero -
Labelgap: [ 7]
Fomet [ |
(@) se value labels

I~ Altemate spacing of adjacent labels

90 Accept Cancel

Submit
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B3 twoway - Twoway graphs
Piots | itfn Xauis]Tilles | Legend | Oversll| By |

Plot definitions:

B twoway - Twoway graphs 3

150

=1olx|

Create... Plots | #in Y aus |Xais | Tites | Legend| Oversl] By |
Edit

Disable

Title:

I
Enzble

Move Up

Maior tick/label properties |

Minor tick/label properties |

Wove Down | A ine propeties |
Reference lines

I Hide axis

I Place axis on opposite side of graph

0K N
B Axis title properties (y axis)

Tewt | Box  Advanced |

[scatter fate apache |

9 0 =

Text pk

B8 Axis title properties (y axis i x|
Text IBm(

Text properties
Size: || -

Color: | Default et

x|

Orientation: | Default >

Justification: | Default L2

Alignment: IDe[ault vl
=P |niner gap: I-S
% Ouaw!

Margirt. | Custom - J

i 1 ooes |_som |

24 Accept_|

Cancel |

B twoway - Twoway graphs

Plots |iffin | ¥ as | % s | Titles | Legend| Overall| By |

=10]x]

Plot definitions:
Creale..,

Edit
Disable
Ensble
R Movellp
ove Down

[scatter fate apache )

o0

Plot |t |

i

- Choose a plot category and type

B Plot 2 x|

@Bes«: plots

€ Range plots
€ Fit plots
 Immediate plots
" Advanced plots

Basic plots: [select type]

r~Plot type: (line: plot]

Y variable: X variable:

= [pich = [apache

[V Add a second y axis on right

Line propetties

=] T Sotonxvaisble

L2

[accept ] Concel | Submt |
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7. 0Odds Ratios and the Logistic Regression Model
a) Odds ratio associated with a unit increase in x

The log odds that patients with APACHE II scores of x and x + 1 will

die are
logit (n(x)) = o + Bx {3.5}
and
logit (n(x +1)) = o0+ B(x +1) = o + P + B {3.6}
respectively.

subtracting {3.5} from {3.6} gives B = logit (n(x +1)) — logit(n(x))
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B =logit (n(x +1)) — logit(n(x))

B m(x+1) ) w(x)
‘log(l—zzumj 1°g(1_,,(x)j

-1 (Tc(x+1)/(1—7c(x+1)))
TR T (0 (- n(x)

and hence

exp(P) is the odds ratio for death associated with a unit
increase in x.

A property of logistic regression is that this ratio remains constant
for all values of x.

8. 95% Confidence Intervals for Odds Ratio Estimates
In our sepsis example the parameter estimate for apache (B) was
0.2012 with a standard error or 0.0609. Therefore, the odds ratio for

death associated with a unit rise in APACHE 1II score is

exp(0.2012) = 1.223

with a 95% confidence interval of exp(0.2012+1.96 *0.0609)
(1.223exp(-1.96x0.0609), 1.223exp(1.96x0.0609))

=(1.09, 1.38).
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9. 95% Confidence Interval for Tc[x]

Let 42 and 42 denote the variance of g andf} .
a B

Let O denote the covariance between § and f; .
Then it can be shown that the standard error of is

se[& + Bx} = Joi +2x0,; +x°c]

A 95% confidence interval for o +px 1is

6+ Pac £1.96 x se[d +[§x}

A 95% confidence interval for o +Bx is

a+ fix +1.96 x se[& +[§x}

Hence, a 95% confidence interval for n[ x] is
(R[x]. &y [x]) , where

exp[& + f%x —1.96 x se[& + ﬁxﬂ

T x] - 1+exp[d+[§x—1.96xs9[d+[§xﬂ
and
2y [x] = exp[&+Bx+1.96xSe[&+Bxﬂ

1+ exp[d +Pa +1.96 x se[d + Bxﬂ
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10. 95% Confidence Intervals for Proportions

It is useful to be able to estimate a 95% confidence interval for the
proportion d,/m; in the sepsis study.

Let d be the number of deaths that occur in m patients,

7 be the probability that an individual dies..

Then d/m has mean n and standard error s(n)=n(1-n)/m

Estimating n by A =d/m gives s(&)=./f(1-%)/m

as the estimated standard error of #

The distribution of # is approximately normal as long as # is not too
close to 0 or 1 and m is fairly large. This approximation gives a
Wald 95% confidence interval for n of

ft £1.96s(#)
This estimate works poorly when 7 is near 0 or 1. Note that it is

possible for this confidence interval to contain values that are less than
0 or greater than 1.

The 100(1-0)% Wald Confidence interval is
t2,58(R) (recall that 2z y;=1.96)

This interval consists of all = for which

—Ra/2 < (ﬁ: - TE)/S(fE) < Ral2
Wilson Confidence Interval for a Proportion.

A better 100(1-a,)% confidence interval due to Wilson is given by all values
of © for which

2419 S(R-m)/s(n) <245 3.7}

This interval differs from the Wald Interval in that the denominator is
s(m) rather than s(ft) This makes a big difference when = is near 0 or 1.

Equation {3.7} can be rewritten as a complex but
unedifying function of d, m and z,,,
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*
*
*

proportions.log

*

. use proportions.dta
. list

Illustrate Wald, Wilson and exact confidence intervals

half die (fate = 1).

Here is data on 20 patients grouped into two
records with 10 patients per record.

Half of these patients live (fate = 0) and the other

* Statistics > Summaries, tables ...
. ci fate [freq = patients], binomial wald

Variable | Obs Mean

.1118034

. ci fate [freq = patients], binomial wilson

Variable | Obs Mean

.1118034

> Summary ...

> Confidence intervals

{1}
- Binomial Wald ---
[95% Conf. Interval]

.2808694 .7191306

{2}
—————— Wilson ------
[95% Conf. Interval]

.299298 .700702

{1} This ci command calculated confidence intervals for the proportion of

patients who die (fate = 1). [freq=patients] ensures that each record
contributes the number of patients indicated by the patients variable.
(Without this command modifier, each record would count as a single

observation.)

binomial specifies that fate is a dichotomous variable. It must be specified
whenever Wald or Wilson confidence intervals are required. wald indicates

that Wald confidence intervals are to be calculated.

| {2} wilson indicates that Wilson confidence intervals are to be calculated.

| These confidence intervals are quite close to each other.
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. replace patients = 18 in 1
(1 real change made)

. replace patients = 2 in 2
(1 real change made)

. list

Suppose that the mortality rate is 10%

. ci fate [freq = patients], binomial wald

-- Binomial Wald ---
Variable | Obs Mean Std. Err. [95% Conf. Interval]

fate | 20 A .067082 0 .2314784*
(*) The Wald interval was clipped at the lower endpoint

. ci fate [freq = patients], binomial wilson

------ Wilson ------

Variable | Obs Mean Std. Err. [95% Conf. Interval]
_____________ oo o o o o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e =
fate | 20 . .067082 .0278665 .3010336

The Wald interval is much narrower than the Wilson and
would extend below zero if Stata did not clip it at zero.
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. return list

scalars:
r(ub) = .3010336452284873
r(lb) = .0278664812137682
r(se) = .0670820393249937
r(mean) = .1
r(N) = 20

. display r(ub)
.30103365

{3}

{4}

these values.

{8} Stata commands store most of their output were they can be used by

other commands. This feature greatly extends the power and
flexibility of this software. The return list command lists some of

interval calculated by the last ci command.

{4} This display command displays the upper bound of the confidence

Baseline | Number 'Number Baseline Number Number
APACHE Il of of APACHE of of
Score Patients | Deaths Il Score Patients Deaths
0 1 0 20 13 6
2 1 0 21 17 9
3 4 1 22 14 12
4 11 0 23 13 7
5 9 3 24 11 8
6 14 3 25 12 8
7 12 4 26 6 2
8 22 5 27 7 5
9 33 3 28 3 1
10 19 6 29 7 4
11 31 5 30 5 4
12 17 5 31 3 3
13 32 13 32 3 3
14 25 7 33 1 1
15 18 7 34 1 1
16 24 8 35 1 1
17 27 8 36 1 1
18 19 13 37 1 1
19 15 7 41 1 0

Example: APACHE
1T Score & Mortality
in Sepsis

The Ibuprofen and
Sepsis Trial
contained 454
patients with known
baseline APACHE II

scores (Bernard et al.

1997). The 30 day
mortal outcome for
these patients is
summarized on the
right.

3: Simple logistic regression

3.22



MPH Program, Biostatistics 11

W.D. Dupont

February 15, 2011

11.

Logistic Regression with Grouped Response Data

Suppose that there are m; patients with covariate x;.

Let d; be the number of deaths in these m; patients.

Then d; has a binomial distribution with mean mn(x;) and hence
Ed/m) = n(x).

Thus the logistic model becomes

logit(E(d/m))) = a. + Px;

*
*
*
*
*
*
*
*
*
*

4.18.Sepsis.Wilson.log

Simple logistic regression of mortality against APACE score in the
Ibuprofen in Sepsis study (Bernard et al. 1997). There are two
records in 4.18.Sepsis.Weighted.dta for each observed APACE score.

apache = an APACHE II score at baseline
fate = 0 or 1 indicating patients who were alive or dead after
30 days, respectively
n = number of study subjects with a given fate and APACE score.

. use 4.18.Sepsis.Weighted.dta, clear

. list if apache==6 | apache==7

Heiee e + We need to calculate the observed mortality
rate and its associated confidence interval
for each APACHE score.

i

3 | 8ng

8 | There were 37 distinct scores.
4|

R + We could issue 47 distinct ¢i commands and
transcribe the confidence intervals back into
Stata.

This would be tedious. Fortunately it is
unnecessary.
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Collapse data to one record per APACHE score.
Calculate observed mortality rate for each score and its
Wilson 95% confidence interval.

I R

. * Statistics > Other > Collect statistics for a command across a by list
. statsby, by(apache): ci fate [freg=n], binomial wilson {1}
(running ci on estimation sample)

command: c¢i fate [fweight= n], binomial wilson

ub: r(ub)
1b: r(1lb)
se: r(se)
mean: r(mean)
N: r(N)
by: apache

Statsby groups
T I - B . B e S

{1} The statsby command can be used in combination with most other Stata
commands. It executes the command to the right of the colon for each unique
combination of values of the variable(s) specified by the by option. This
command executes

ci fate [freg=n], binomial wilson
separately for each unique value of apache. The data in memory is replaced

by new data with one record for each distinct value of apache. Output from
each command is also stored with the indicated variable names.
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. list if apache==6 | apache==7

e e e e e e e e e e e e e e e e e e e e e m e —m—————— ==
| apache ub 1b se
| ________________________________________

6. | 6 .4758923 .0757139 .1096642

7. 7 .6093779 .1381201 .1360828

e e e e e e e e e e e e e e e e e mm——m—————— ==

. generate patients = N
. generate p = mean

. generate deaths = p*patients

_________________ +
mean N |
_________________ |
.2142857 14 |
.3333333 12 |
_________________ +

{2}

{3}

{2} There is now only one record for each value of apache. The variables
N and mean store the number of patients with the specified value of
apache and their associated mortality rate, respectively. ub and lb
give the Wilson 95% confidence interval for this rate.

N.B. All other variables that are not specified by the by option are lost. Do
not use this command with data that you value and have not saved!

apache who die.

{3} deaths give the number of patients with the indicated value of

* Statistics > Generalized linear models > Generalized linear models (GLM)

. glm deaths apache, family(binomial patients)

Generalized linear models

Optimization : ML: Newton-Raphson
Deviance = 84.36705142

Pearson = 46.72842945

Variance function: V(u) = u*(1-u/patients)
Link function : g(u) = 1In(u/(patients-u))
Standard errors : OIM

Log likelihood -60.93390578

link(logit)

No. of obs
Residual df
Scale param
(1/df) Deviance
(1/df) Pearson

[Binomial]
[Logit]

{1}

38

36

1
2.343529
1.298012

3.312311

BIC -46.58605033
deaths | Coef Std. Err. z
apache | .1156272 .0159997 7.23
_cons | -2.290327 .2765283 -8.28

-2.832313

.0842684

[95% Conf.

Interval]

.146986
-1.748342
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{1}

and logit link function specify that logistic regression is to be used.

family(binomial patients) indicates that each observation describes the
outcomes of multiple patients with the same apache score; patients records the
number of subjects with each score; deaths records the number of deaths observed
in these subjects.

Regress deaths against apache score. The bionomial random component

B glm - Generalized linear models N o [ B4
Model |Mnch2] by/it/in | Weights | SE/Robust | Repotting | Maximization |
wvariable: wariables:
ldealhs :J:Hapa:he _:l_.J
Famiy and Inverse Negative
link choices: Gaussian | Gaussian Binomial Paisson binomial Gamma
Idenity| € s » » C .
g| € » | » ® [ ® | »
L] | © | | |
Fiobi [ & 1 I I
C logioa | ¢ | I I
pwe| € | | c | | | ¢
oo | | € | | |
Meg birom | | | | [ < |
mmmI | [ < | I I
Log<omp. | | [ = | | [
Bemoulitials [n): € =] Comtant @ )fpatients €= =] Vaiable
9 0% [ ok ] cencel | Submt
. predict logodds, xb {2}

. generate e_prob = exp(logodds)/(1+exp(logodds))

. label variable e_prob "Expected Mortality at 30 Days"
|{2} The

. Calcd};’?ebéé%ago%(f’l%génce region for e_prob

. predict stderr, stdp

linear predictor 1is Jlogodds = -2.2903 +

. generate lodds_lb = logodds - 1.96*stderr

. generate lodds_ub = logodds + 1.96*stderr

. generate prob_lb = exp(lodds_lb)/(1+exp(lodds_1b))

. generate prob_ub = exp(lodds_ub)/(1+exp(lodds_ub))

. label variable p "Observed Mortality Rate"

. * Data > Describe data > List data

. list p e_prob prob_lb prob_ub ci951b ci95ub apache if apache == 20
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. twoway rarea prob_ub prob_lb apache, color(yellow) 111/
> || scatter p apache, color(blue) 111
> || rcap ub 1lb apache, color(blue) /11 {3}
> || line e_prob apache, yaxis(2) clwidth(medthick) color(red) /11
> , Yylabel(0(.2)1,labcolor(blue) angle(0)) /1] {4}
> ytick(0(.1)1, tlcolor(blue)) /1] {5}
> ylabel(0(.2)1, axis(2) labcolor(red) angle(0)) /1l {6}
> ytick(0(.1)1, axis(2) tlcolor(red)) /11
> xlabel(0(5)40) xtick(0(1)40) 111
> ytitle(,axis(2) color(red)) /1]
> ytitle(Observed Mortality Rate, color(blue)) /1]
> legend(order(1 "95% CI from model" 2 3 "95% CI from this obs." 4))
{3} rcap plots capped rods (error bars) joining the values of ub and
1b for each value of apache.
{4} This graph will have two y-axes: a left-axis for the observed
mortality rate and a right-axis for the expected morbidity rate. Here we
color the default (left) axis blue to match the blue scatterplot of observed
mortality rates.
| {5} Also, color the tick lines blue on the left axis.
{6} The axis(2) suboption indicates that this ylabel option refers to
the right axis. It is colored red to match the expected mortality curve.
Piots iffin | asis | X asis | Tites | Legend| Overal| By |
Plot definitions:
rarea ==p[Fiot 1
scatter m=p| S ——
- x|
Disable P i |
Enable
~Choose a plot category and type
_Movels ||~ goe e Flange plots: [select type]
HMove Dowr ' Range plots
" Fit plots g
€ Immediate plots iange o 3
e © Advanced plots e i wantdl |
2R [t Potiype: (ange plotwith capped spkes)
Y1 variable: X variable:
=i > h=pfapache =] I Setonxvaiable
Y2 variable:
—>|m> ‘I I Add a second y axis on right
—
8 Spike properties | 90 | T
—> Colo [T~ |
‘width: -
Pattem: | Default hd
Drientation: | Default v]
@0 Cocs | _sum |
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B twoway - Twoway graphs o [ 4|
Plots | itin xwl Titles | Legend | Overall| By | )
Plot defiriions: = twoway - Twoway graphs o =] |
;}2:12 Create.. Plots | itfin Ymis|xm]1m | Legend| Overall| By | )
line —hoRd ER | B8 Axis tick and label properties (y axi
_U.__.’am'bmbserl)edMullalllyHale Rule ,.,_.‘ Gid I
Enable
Motk e Showt labels: [Defaut -
Hove o Asis line propetties | =]
== Color: |Blue -
Reference lines
Size: -
I Axis tick and label properties (y axis)RiEd e =
Fue 'li:ks | Gid | (e T
=i 8 Axis tick and label properties x|
€ Use default e Rule | Labels Ticks |Grd |
" Suggest # of ticks —PID Minimum value -
Range/Detta > Mai o
9Miﬂ P U TR Show ticks: | Default -
- [02 Delta
€ Custom - Color: |Blue 'I
C hore T |
The axis rule determines the number of ticks and their relative positions, Width: ,—.LI
Placement: | Default >
12 §R] Accept | Cancel | Submk
{2 r) Acoept | Cancel | Submt |

[EL

B twoway - Twow, B8 twoway - Twoway graphs
Pots |#in (Fads Dras | P o s | X ais | Tites | Legend| Overal | By

B Properties for second y axis 1

=10lx|
|
]

_Properies |

Minor tick/label propetties |

Title:
IDbsetved Mortality Rate
—_ Title:
— | Msjortick/label properts ||
—_— K Eqalld:ilabelpmpulm >J
| Reference lines
;I tide atis Relerence lines
™ Place axis on opposite
™ Hide axis

(ine &_prob apache. ...)

I Place axis on opposite side of graph

s line propeities | B8 Axis tick and label properties

Rule | Labels Ticks |Grid |

1 Ticks

Show ticks: IDeFauR > I

B Axis tick and label properties el —> Cobor [EER - |
e r.m 6 | Axis tick ar‘\dlabel properties § Xk =1
s ule — Lm Gl i I
© Use defaul e Labels |
© Suggest Hof licks N —T T Show labels: [Defaut =
@ﬁm"'ﬂ [ Maimum = Cobr: [fed |
Hoa —> 07— oas o —
Lt —> foge oo 7]
The ais ule deteimines the number of ticks and theit relative positi Labelgap [~ ics]
Fomat: l— _]
I Use value labels
™ Alemate spacing of adjacent labels

o0

T -

= 20

= |

Cancel Submit
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Note that the width of these intervals depends on the number of
patients with a given score and the observed mortality rate.
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The blue error bars in the regression graph give 95% confidence
intervals that are derived from the observed mortality rates at each
separate APACHE II score. These confidence intervals are not
given for scores with zero or 100% mortality. The yellow shaded
region gives 95% confidence intervals for the expected mortality
that are derived from the entire logistic regression.

Overall, the fit appears quite good, although the regression curve
comes close to the ends of the confidence intervals for some scores and
is just outside when the APACHE score equals 18.

*

* Graph number of patients with different APACHE II scores

*

. * Graphics > Histogram

. histogram apache [freq=patients], discrete frequency xlabel(0(5)40) /// {4}
> ylabel(0(5)30, angle(0)) ytitle(Number of Patients)

(start=0, width=1)

{4} This command produces a histogram of the patient APACHE II
scores.

discrete specifies that the data have a discrete number of values.
It produces one bar per value unless width is also specified.

frequency specifies that the y-axis is to be number of patients
rather than proportion of patients.
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i [] |

B histogram - Histograms for continuous and ¢
Main | iffn DenxﬁypldslAddplds]Yaads]XalislTiﬂes | Legend | Oversll| By |

~Data
Vatiable: " Data are cortinuous
[spache | @ Data are discrete
Bins ¥ ais
[ 0= Numberof bins € Densiy
; € Fraction
r Width of bins Py
- | Thearetical minimum value Percent
Bar properties I~ Add height labels to bars
Barlabel praperties
905 histogram - Histograms for continuous and _ o] x|
Main | ifin  Weights | Density plots | Add plots] ¥ as | X asis | Tites | Legend| Overall| By |
‘Weight type: Help weights '
€ None
% Frequency weights
Frequency weight:
| patients =]
o 0 = oK Cancel Submit
30
254
12
c
2 20
©
o
IS
o 154
i)
=
Z
10
54
04
T T T T T T T T T
0 5 10 15 20 25 30 35 40
APACHE Score at Baseline
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12. Simple 2x2 Case-Control Studies
a) Example: Esophageal Cancer and Alcohol

Breslow & Day, Vol. I (1980) give the following results from the Ille-et-

Vilaine case-control study of esophageal cancer and alcohol (Tuyns et
al. 1977) .

Cases were 200 men diagnosed with esophageal cancer in regional
hospitals between 1/1/1972 and 4/30/1974.

Controls were 775 men drawn from electoral lists in each commune.

Esophageal | Daily Alcohol Consumption

Cancer > 80g < 80g Total
Yes (Cases) 96 104 200
No (Controls) 109 666 775
Total 205 770 975

b) Review of Classical Case-Control Theory
Let m;= number of cases (i = 1) or controls (i = 0)

d, = number of cases (i = 1) or controls ( = 0) who are heavy
drinkers.

Then the observed prevalence of heavy drinkers is
d,/my =109/775 for controls and
d,/m; =96/200 for cases.

The observed prevalence of moderate or non-drinkers is
(m, - dy)/m, = 666/775 for controls and
(m, - d;)/m; = 104/200 for cases.
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The observed odds that a case or control will be a heavy drinker is

(d;Im)I[(m;-d;)Im]=d;/(m; -d,)
=109/666 and 96/104 for controls and cases, respectively.

The observed odds ratio for heavy drinking in cases relative to controls is

o d/(m-d) _ 96/104
V= d /g —dy) =~ 109/666 264

If the cases and controls are a representative sample from
their respective underlying populations then

1.  is an unbiased estimate of the true odds ratio for heavy
drinking in cases relative to controls in the underlying
population.

2. This true odds ratio also equals the true odds ratio for
esophageal cancer in heavy drinkers relative to moderate
drinkers.

Case-control studies would be pointless if this were not true.

Since esophageal cancer is rare
also estimates the relative risk of
esophageal cancer in heavy drinkers
relative to moderate drinkers.

Woolf’s estimate of the standard error of the log odds ratio is

se = \/1 + ! + 1 + !
tos(#) d, my-dy, di m—d
and the distribution of log(\fl ) is approximately normal.
Hence, if we let
V= exp[—1.96selogw)}

and
Yy =¥ exp[1.96 selogw)]
3WU

then (V,,¥y) is a 95% confidence interval fory .
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13. Logistic Regression Models for 2x2 Contingency Tables

Consider the logistic regression model
logit(E(d; / m;)) = a. + Bx; {3.9}

where E(d;/ m;) =n; = Probability of being a heavy drinker for
cases (i = 1) and controls (i = 0).
1= cases

and x; = {O = for controls
Then {3.9} can be rewritten
logit(r;) = log(n; / 1 —m,)) = o + Px;
Hence
log(m, /(1-m;)) = a+Px; = a+p
log(my / (1—my)) =a+Pxy, =a

since x; = 1 and x, = 0.

Subtracting these two equations gives
log(n, / (1-my))—log(my / (1-mp)) =B

10g[n1/(1—n1)

=log(y)=PB and hence the true odds ratio ¥ = e
o/ (1-mg)

a) Estimating relative risks from the model coefficients

Our primary interest is in B. Given an estimate f; of B then ¥ = ef

b) Nuisance parameters

o is called a nuisance parameter. This is one that is required by the
model but is not used to calculate interesting statistics.

14. Analyzing Case-Control Data with Stata

The Ille-et-Vilaine data may be analyzed as follows:

esoph_ca_cc1.1log

*

*
. * Logistic regression analysis of Illes-et-Vilaine
. * 2x2 case-control data.
*
*
*

Enter 2x2 table by hand with editor
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. edit {1}
. list
cancer alcohol patients
1. 0 0 666
2. 1 0 104
3. 0 1 109
4. 1 1 96
. label define yesno 0 "No" 1 "Yes" {2}
. label values cancer yesno {3}
. label define dose 0 "< 80g" 1 ">= 80g"
. label values alcohol dose
. list {4}
cancer alcohol patients
1. No < 80¢g 666
2. Yes < 80¢g 104
3. No >= 809 109
4. Yes >= 809 96

{1} Press the Editor button to access Stata’s spreadsheet-like editor.
Enter three variables named cancer, alcohol and patients as
shown in the following list command.

{2} The cancer variable takes the value 0 for controls and 1 for
cases. To define these values we first define a value label called
yesno that links 0 with “No” and 1 with “Yes”.

{3} We then use the label values command to link the variable
cancer with the values label yesno. Multiple variables can be
assigned to the same values label.

{4} The list command now gives the value labels of the cancer and
alcohol variables instead of their numeric values. The numeric
values are still available for use in estimation commands.
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*

* Calculate the odds ratio for esophageal cancer

* associated with heavy drinking.

*

* Statistics > Epidemiology... > Tables... > Case-control odds ratio

. cc cancer alcohol [freg=patients], woolf

{5}
| alcohol | Proportion
| Exposed  Unexposed | Total Exposed
_________________ oo o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e -
Cases | 96 104 | 200 0.4800
Controls | 109 666 | 775 0.1406
_________________ o
Total | 205 770 | 975 0.2103
| |
| Point estimate | [95% Conf. Interval]
[ mmr e L T
0dds ratio | 5.640085 | 4.000589 7.951467 (Woolf) {6}
Attr. frac. ex. | .8226977 | .7500368 .8742371 (Woolf)
Attr. frac. pop | .3948949 |
oo o o e e e e e e e e e e e e e e e e e e e e e e e e e e e ee o=
chi2(1) = 110.26 Pr>chi2 = 0.0000

{5} Perform a classical case-control analysis of the data in the 2x2
table defined by cancer and alcohol. [freq=patients] gives the
number of patients who have the specified values of cancer and
alcohol. The woolf option specifies that the 95% confidence
interval for the odds ratio is to be calculated using Woolf’s method.

We could have entered one record per patient giving

666 records with cancer = 0 and alcohol =0,
104 records with cancer = 1 and alcohol =0,
109 records with cancer = 0 and alcohol = 1, and
96 records with cancer = 1 and alcohol = 1.

Then the command
cc cancer alcohol, woolf

would have given exactly the same results as those shown in this
example.

N.B. We need to use the [freq=patients] command modifier whenever each
record represents multiple patients. This will also be true in logistic
regression and other commands.

{6} The estimated odds ratio is RGP0 B 5.64
109/ 666
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8 cc - Case-control studies

Main | iffn | Weights | Options |

=zl

Case variable: Exposed variable:
- |cancer x| =pfaicohol =]
B cc - Case-control studies Il o ] |
Man | ifn  Weights | Options|
‘Weight type: Help weights
" None
A :
o i B cc - Case-control studies ] _ =]
Frequency weight: - - :
0
,Dalienls— Main | ii/in | Weights Ilhmsi
I™ Stratify on variable: ™ Mumber of subjects variable:
€ Exact confidence intervals
| Comfisld agpicmation
@ Wool approsimation
ﬂﬂf@;’ " Testbased confidence intervals
I™ Fisher's exactp
95 | Confidence level
o 0|

*
* Now calculate the same odds ratio using logistic regression

*

* Statistics > Binary outcomes > Logistic regression

. logit alcohol cancer [freg=patients] {7}
Logistic regression Number of obs = 975
LR chi2(1) = 96.43
Prob > chi2 = 0.0000
Log likelihood = -453.2224 Pseudo R2 = 0.0962
alcohol | Coef. Std. Err. z P>|z]| [95% Conf. Interval]
_____________ oo e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e mmmmemmmmmmmmmmmm—mm—— -
cancer | 1.729899 .1752366 9.87 0.000 1.386442 2.073356
_cons | -1.809942 .1033238 -17.52 0.000 -2.012453 -1.607431
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{7}

This is the analogous logit command for simple logistic regression.
If we had entered the data as

cancer heavy patients
0 109 775
1 96 200

Then we would have achieved the same analysis with the command
glm heavy cancer, family(binomial patients) link(logit)

Both of these commands fit the model
logit(E(alcohol)) = a + cancer*p

giving B = 1.73 = the log odds ratio of being a heavy drinker in
cancer patients relative to controls. The standard error of B is
0.1752

The odds ratio is exp(1.73) = 5.64.

The 95% confidence interval for the odds ratio is
exp(1.73 £1.96%0.1752) = (4.00, 7.95)

H logit - Logistic regression, reporting coel _ =l x|
Model | by/it/in {eights] SE/Robust | Reporting | Masinization |

Dependent variable: Independent variables:

= |alcohol

[~ Options:

| d-b} cancer ;|_|

I Suppress constant term

Dffset variable:

I™ Retain perfect predictor variables

Constraints:

-

Model | by/if/in Weights | SE/Robust | Reporting | Masimization |

; Hepweihts |
I Keep colinear varisbles (1arel used) peirine cb Hep

€ None

@Frequem:y weights
 Sampling weights
" Importance weights (1are)

00 %

Frequency weight:

| palients =

(=]

90 0K Cancel Submi
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* Statistics > Binary outcomes > Logistic regression (reporting odds ratios)
logistic alcohol cancer [freg=patients]

{8}

Logistic regression No. of obs =
975

LR chi2(1) = 96.43

Prob > chi2= 0.0000
Log likelihood =  -453.2224 Pseudo R2 = 0.0962
alcohol | Odds Ratio  Std. Err z P>|z| [95% Conf. Interval]
_________ o

cancer | 5.640085 .9883491 9.87 0.000 4.000589 7.951467

{8} The logistic command calculates the odds ratio and its confidence
interval directly.

H logistic - Logistic regression, reporting o _ o] x|
Model | by/i/in { Weighis) SE/Robust | Reporing | Maiizatin |

Dependent variable: Independent variables:

—}la\cnhn\ :‘ j}l cancer _'] J

~Options

Offset variable:

-

™ Retain perfect predictor variables

Constiaints:
|

™ Keep colinear variables (rarely used)

Model | by/iifin Weights | SE/Robust | Repatting | Masimization |
Weight type:

€ Mone

® Frequency weights

" Sampling weights

" Importance weights [rare]

GRS Fmqrc et

| patients

2 NR L [ oK ] Concel | submt |
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a) Logistic and classical estimates of the 95% CI of the OR

The 95% confidence interval is

(5.64exp(-1.96x0.1752), 5.64exp(1.96x0.1752)) = (4.00, 7.95).

The classical limits using Woolf’s method is

(5.64exp(-1.96xs), 5.64exp(1.96xs)) =(4.00, 7.95),
where s2 =1/96 + 1/109 + 1/104 + 1/666 = 0.0307 = (0.1752)2.

Hence Logistic regression is in exact agreement with classical
methods in this simple case.

In Stata the command

cc cancer alcohol [freq=patients], woolf

gives us Woolf’s 95% confidence interval for the odds ratio. We will

cover how to calculate confidence intervals using glm in the next
chapter.

15. Regressing Disease Against Exposure

The simplest explanation of simple logistic regression is the one
given above. Unfortunately, it does not generalize to multiple logistic
regression where we are considering several risk factors at once. In
order to make the next chapter easier to understand, let us return to
simple logistic regression one more time.

Suppose we have a population who either are or are not exposed to some
risk factor.

Let n; denote the true probability of disease in exposed (j = 1) and
unexposed (j = 0) people.

We conduct a case-control study in which we select a representative
sample of diseased (case) and healthy (control) subjects from the
underlying population. That is, the selection is done in such a way that

the probability that an individual is selected is unaffected by her
exposure status.
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Let m; be the number of study subject who are (j = 1) or are not (j = 0)
exposed,

d.

/. be the number of cases who are (j = 1) or are not (j = 0) exposed,

x; = j denote exposure status, and

n; be the probability that a study subject is a case given that she is

(=1) or is not (j=0) exposed.

Consider the model
logit (E(d;/m;))=o+Px;

This is a legitimate logistic regression model with E(d;/m;)==;. It can
be shown, however, that this model can be rewritten as
logit(n) = a' +fx;

where o' is a different constant. However, since o’ cancels out in the
odds ratio calculation, B estimates the log odds ratio for disease in
exposed vs. unexposed members of the population as well as in our case-
control sample.

Thus in building logistic regression models it makes sense to regress
disease against exposure even though we have no estimate of the
probability of disease in the underlying population.

16. What we have covered

% Simple logistic regression: Assessing the effect of a
continuous variable on a dichotomous outcome

2

« How logistic regression parameters affect the probability of
an event

>  m(x)=exp(a+px)/(1+exp(a+px))

» exp(P) is the odds ratio for death associated with a unit
increase in x.
« Probability, odds and odds ratios

% Generalized linear models: The relationship between linear
and logistic regression logit(E(d,)) = o + x,

< Wald and Wilson confidence intervals for proportions

< Plotting probability of death with 95% confidence bands as a
function of a continuous risk factor

< Review of classic 2x2 case-control studies

% Analyzing case-control studies with logistic regression
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