

1. The Model

If the data is organized as one record per patient then the model is

logit
$$(E(d_i)) = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik}$$
 {4.1}

where

 $x_{i1}, x_{12}, ..., x_{ik}$ are covariates from the i^{th} patient

 α , β_1 , ... β_k , are unknown parameters

 $d_i = \begin{cases} 1: & i^{\text{th}} \text{ patient suffers event of interest} \\ 0: & \text{otherwise} \end{cases}$

If the data is organized as one record per unique combination of covariate values then the model is $logit (E(d_i/m_i)) = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_k x_{ik} \qquad \{4.2\}$ where m_i is the number of patients with covariate values $x_{i1}, x_{i2}, ..., x_{ik}$ and d_i is the number of events among these m_i subjects. d_i is assumed to have a binomial distribution obtained from m_i dichotomous trials with probability of success $\pi(x_{i1}, x_{i2}, ..., x_{ik})$ on each trial. Thus, the only difference between simple and multiple logistic regression is that the linear predictor is now $\alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_k x_{ik}$. As in simple logistic regression, the model has a logit link function; the random component, d_i/m_i has a binomial distribution.

		Cancer	Daily Alco Consump	ohol htion		
	Age		<u>></u> 80g	<80g		% <u>≥</u> 80g
:	25-34	Yes No	1 9	0 106	1 115	100.00% 7.83%
		-	10	106	116 <mark>-</mark>	<mark>8.62%</mark>
:	35-44	Yes No	4 26	5 164	9 190	44.44% 13.68%
			30	169	199 <mark>-</mark>	<mark>15.08%</mark>
	45-54	Yes No	25 29	21 138	46 167	54.35% 17.37%
			54	159	213 <mark></mark>	<mark>25.35%</mark>
:	55-64	Yes No	42 27	34 139	76 166	55.26% 16.27%
			69	173	242 <mark></mark>	28.51%
	65-74	Yes No	19 18	36 88	55 106	34.55% 16.98%
			37	124	161 <mark>-</mark>	<mark>22.98%</mark>

a) Confounding Variables

A **confounding variable** is one that is associated with both the disease and exposure of interest but which is not, in itself, a focus of our investigation.

Note mild evidence that age confounds the effect of alcohol on cancer risk.

b) Age-adjusted odds ratios

The following log file show how to calculate the common odds ratio for esophageal cancer associated with heavy alcohol use in five age strata. It thus calculates an **age-adjusted** odds ratio for esophageal cancer among heavy and light drinkers of similar age.

3. Deriving the Mantel-Haenszel test with Stata * 5.5.EsophagealCa.log . * * Calculate the Mantel-Haenszel age-adjusted odds ratio from . * the Ille-et-Vilaine study of esophageal cancer and alcohol . * (Breslow & Day 1980, Tuyns 1977). * . use C:\WDDtext\5.5.EsophagealCa.dta, clear . codebook age cancer heavy age ----- Age (years) type: numeric (float) label: age range: [1,6] units: 1 unique values: 6 coded missing: 0 / 192 tabulation: Freq. Numeric Label 1 25-34 32 32 2 35-44 32 3 45-54 4 55-64 32 5 65-74 32 32 6 >= 75

	type: label:	numeric yesno	(float)
unite	range:	[0,1]	
unito.	unique values:	2	coded missing: 0 / 192
	tabulation:	Freq. 96 96	Numeric Label O No 1 Yes
heavy ·	type: label:	numeric heavy	Heavy Alcohol Consumption ; (float)
heavy -	type: label: range:	numeric heavy [0,1]	Heavy Alcohol Consumption c (float)
heavy ·	type: label: range: 1 unique values:	numeric heavy [0,1]	Heavy Alcohol Consumption ; (float) coded missing: 0 / 192

Row variable:		Colu	nn variabl		
Superrow va	riables:	→ hea	/y rcolumn v	×iiable:	
	Statistics	Percentile		Variable	
1 None		▼ 50		¥	
2 None		▼ 50 ÷		×	
3 None		▼ 50 ÷		table - Tables of summary statist	ics
4 None		▼ 50 ÷			
5 None		▼ 50		Main by/if/in Weights Options	
				Weight type:	Help weights
			_	C None	
				C Sampling weights	
				C Analutic weights	
				C Importance weights (rare)	
				E	
			_	patients	
				1	

ge (years)	OR	[95% Conf.	Interval]	M-H Weight		
25-34		0		0	(exact)	
35-44	5.046154	.9268664	24.86538	.6532663	(exact)	
45-54	5.665025	2.632894	12.16536	2.859155	(exact)	
55-64	6.359477	3.299319	12.28473	3.793388	(exact)	
65-74	2.580247	1.131489	5.857261	4.024845	(exact)	
>= 75		4.388738		0	(exact)	
Crude	<mark>5.640085</mark>	<mark>3.937435</mark>	8.061794		(exact)	{3}
l combined	5.157623	3.562131	7.467743			{4}
st of homoger	neity (Tarone)	chi2(5) =	9.30	Pr>chi2 = 0.0	977	{5}
Те	est that combi	ined OR = 1:				{6}
	Ма	antel-Haensze	el chi2(1) =	85.01		(-)
	_		· · · · · ·			

1-5	The by(age) option causes odds ratios to be calculated for each age strata . No estimate is given for the youngest strata because there were no moderate drinking cases. No estimate is given for the oldest strata because there were no heavy drinking controls.
{3}	The crude odds ratio is 5.64 which we derived in the last chapter. This odds ratio is obtained by ignoring the age strata. The exact 95% confidence interval consists of all values of the odds ratio that cannot be rejected at the $P = 0.05$ level of statistical significance (see text, Section 1.4.7). The derivation of
	this interval uses a rather complex iterative formula (Dupont and Plummer 1999).

(5) The M-H estimate is only reasonable if the data is consistent with the hypothesis that the alcohol-cancer odds ratio does not vary with age. The **test for homogeneity** tests the null hypothesis that all age strata share a common odds ratio. This test is not significant, which suggests that the M-H estimate may be reasonable.

[6] The test of the null hypotheses that the odds ratio equals 1 is highly significant. Hence the association between heavy alcohol consumption and esophageal cancer can not be explained by chance. The argument for a causal relationship is strengthened by the magnitude of the odds ratio.

Case variable: Exposed variable: freavy Cancer Case-control studies	CC - Case-con trol Main it/n Weights Options Stratily on variable: age	Studies
Case corrections corrections Main it/n Weights Diplom Weight type:	OUse Mantel-Haenszel Use external User-specified variable: Include missing categories Display pooled estimate No crude estimate No homogeneity test Breslow-Day homogeneity test Tarone's homogeneity test	Exact confidence intervals Confield approximation Woolf approximation Test-based confidence intervals Fisher's exact p E Confidence level
		OK Cancel Submi

4. Effect Modifiers and Confounding Variables

a) Test of homogeneity of odds ratios

In the previous example the test for homogeneity of the odds ratio was not significant (see comment 5). Of course, lack of significance does not prove the null hypotheses, and it is prudent to look at the odds ratios from the individual age strata. In the preceding Stata output these values are fairly similar for all strata except ages 65-74, where the odds ratio drops to 2.6. This may be due to chance, or perhaps, to a hardy survivor effect. You must use your clinical judgment in deciding what to report.

Effect Modifier: A variable that influences the effect of a risk factor on the outcome variable.

The key differences between confounding variables and effect modifiers are:

- i) Confounding variables are not of primary interest in our study while effect modifiers are.
- A variable is an important effect modifier if there is a meaningful interaction between it and the exposure of interest on the risk of the event under study.

a)	Estimating the common relative risk from the parameter estimates
Let	
m_{jk}	be the number of subjects in the j^{th} age strata who are $(k = 1)$ or are not $(k = 0)$ heavy drinkers.
d_{jk}	be the number of cancers among these m_{jk} subjects.
x_k	= k = 1 or 0 depending on their drinking status.
π_{jk}	be the probability that someone in the j^{th} age strata who does ($k = 1$) or doesn't ($k = 0$) drink heavily develops cancer.

Consider the logistic regression model $\log t \left(E(d_{jk} / m_{jk}) \right) = \alpha_j + x_k \beta \qquad \{4.3\}$ where d_{jk} has a binomial distribution obtained from m_{jk} independent trials with probability of success with π_{jk} on each trial. Then for any age strata j, $E(d_{jk} / m_{jk}) = \pi_{jk}$ and $\log t \left(E(d_{j0} / m_{j0}) \right) = \log t(\pi_{j0}) = \log(\pi_{j0} / (1 - \pi_{j0})) = \alpha_j \qquad \{4.4\}$ Similarly $\log t \left(E(d_{j1} / m_{j1}) \right) = \log(\pi_{j1} / (1 - \pi_{j1})) = \alpha_j + \beta \qquad \{4.5\}$ Subtracting equation $\{4.4\}$ from equation $\{4.5\}$ gives that $\log \left(\pi_{j1} / (1 - \pi_{j1}) \right) - \log(\pi_{j0} / (1 - \pi_{j0})) = \beta \quad \text{or}$ $\log \left(\frac{\pi_{j1} / (1 - \pi_{j1})}{\pi_{j0} / (1 - \pi_{j0})} \right) = \log \psi = \beta$

Note that this model places **no restraints** of the effect of **age** on the odds of cancer and only requires that the within strata odds ratio be constant.

For example, a moderate drinker from the 3rd age stratum has log odds

 $logit(E(d_{3,0} / m_{3,0})) = \alpha_3$

While a moderate drinker from the first age stratum has

 $logit(E(d_{1,0} / m_{1,0})) = \alpha_1$

Hence the log odds ratio for stratum 3 versus stratum 1 is $\alpha_3 \cdot \alpha_1$, which can be estimated independently of the cancer risk associated with age strata 2, 4, 5 and 6.

An equivalent model is $logit(E(d_{jk} / m_{jk})) = \alpha + z_2\alpha_2 + z_3\alpha_3 + z_4\alpha_4 + z_5\alpha_5 + z_6\alpha_6 + x_k\beta \qquad \{4.6\}$ For this model, a moderate drinker from the 3rd age stratum has log odds $logit(E(d_{3,0} / m_{3,0})) = \alpha + \alpha_3$ While a moderate drinker from the first age stratum has $logit(E(d_{1,0} / m_{1,0})) = \alpha$ Hence the log odds ratio for stratum 3 versus stratum 1 is $(\alpha + \alpha_3) - \alpha = \alpha_3$ This is slightly preferable to our previous formulation in that it involves one parameter rather than 2.

An alternative model that we could have used is $logit(E(d_{jk} / m_{jk})) = age \times \alpha + x_k\beta$ However, this model imposes a linear relationship between age and the log odds for cancer. That is, the log odds ratio for age stratum 2 vs stratum 1 is $2\alpha - \alpha = \alpha$ for age stratum 3 vs stratum 1 is $3\alpha - \alpha = 2\alpha$: for age stratum 6 vs stratum 1 is $6\alpha - \alpha = 5\alpha$


```
. generate age2 = 0
. replace age2 = 1 if age == 2
(32 real changes made)
. generate age3 = 0
. replace age3 = 1 if age == 3
(32 real changes made)
. generate age4 = 0
. replace age4 = 1 if age == 4
(32 real changes made)
. generate age5 = 0
. replace age5 = 1 if age == 5
(32 real changes made)
. generate age6 = 0
. replace age6 = 1 if age == 6
(32 real changes made)
```

ogistic	regression				No. of obs LR chi2(6) Prob > chi2	= = =	9 200. 0.00	975 57 000
og likel	Lihood = -3	394.46094			Pseudo R2	=	0.20)27
ancer	Coef.	Std. Err.	z	P> z	[95% Conf.	Inter	val]	
age2	1.542294	1.065895	1.45	0.148	546822	3.6	3141	
age3	3.198762	1.02314	3.13	0.002	1.193445	5.20	4079	
age4	3.71349	1.018531	3.65	0.000	1.717207	5.70	9774	
age5	3.966882	1.023072	3.88	0.000	1.961698	5.97	2066	
age6	3.96219	1.065024	3.72	0.000	1.87478	6.04	9599	
heavy	1.66989	.1896018	8.81	0.000	1.298277	2.04	1503	{2}
_cons	-5.054348	1.009422	-5.01	0.000	-7.032778	-3.07	5917	
The	results of th	nis logistic r	egressio	n are si	milar to those	obtair	led	

[1] By default, Stata adds a constant term to the model. Hence, this command uses model {4.6}.

The *coef* option specifies that the model parameter estimates are to be listed as follows.

{2} The parameter estimate associated with *heavy* is 1.67 with a standard error of 0.1896. A 95% confidence interval for this interval is $1.67 \pm 1.96 \times 0.1896 = [1.30, 2.04]$.

The age-adjusted estimated odds ratio for cancer in heavy drinkers relative to moderate drinkers is

 $\psi = \exp(1.67) = 5.31$ with a 95% confidence interval

 $[\exp(1.30), \exp(2.04)] = [3.66, 7.70].$

Cancer age2 age3 age4 age5 a	ge6 heavy 💌	
Options Offset variable: Retain perfect predictor variables		reporting coefficients
Constraints:	Model by/fr/in Weights SE/Bobust Reporting 1	
Keep collinear variables (rarely used)	Veight type: None Frequency weights Sampling weights Importance weights (are) Frequency weight: patients	Help weights

					No. of she	_	075
gistic	c regression				NO. OT ODS	1	975 200 57
					Prob > chi2	=	0.0000
g like	elihood = -	394.46094			Pseudo R2	=	0.2027
ancer	Odds Ratio	Std. Err.	Z	P> z	[95% Conf.	Inter	rval]
age2	4.675303	4.983382	1.45	0.148	.5787862	37.7	76602
age3	24.50217	25.06914	3.13	0.002	3.298423	182	.0131
age4	40.99664	41.75634	3.65	0.000	5.56895	301	.8028
age5	52.81958	54.03823	3.88	0.000	7.777389	392	.3155
age6	52.57232	55.99081	3.72	0.000	6.519386	423	.9432
neavy	<mark>5.311584</mark>	1.007086	8.81	0.000	<mark>3.662981</mark>	7.70	<mark>)2174</mark>
{ 3 }	Without the parameter usually sav	e <i>coef</i> option and expone es hand com	1 logistic entiates iputatio	o.ooo c does r the ot n.	ot output the c	zonsta s. Tl	ant his

Model by/l/n Weights SE/Robust Reporting Dependent variable: Independent variables: cancer	on, reporting odds r Maximization age6 heavy	
Options Offset variable: Retain perfect predictor variables		
Constraints:	logistic - Logistic regression, re Model by/l/n Weights SE/Robust Reporting Maximizal Weight type:	eporting odds r X
	Importance weights (rare) Frequency weight: patients	×
		OK Cancel Submit

cancer | Odds Ratio. Std. Err. z P>|z| [95% Conf. Interval] age | 4.6753034.9833821.450.148.578786224.5021725.069143.130.0023.29842340.9966441.756343.650.0005.5689552.8195854.038233.880.0007.11138952.5723255.00012.7205.5620 2 37.76602 3 182.0131 301.8028 4 392.3155 5 İ 52.57232 55.99081 3.72 0.000 6 6.519386 423,9432 heavy | 5.311584 1.007086 8.81 0.000 3.662981 7.702174 {2} **{2**} Note that the odds ratio estimate for heavy = 5.31 is the same as in the earlier analysis where the indicator variables were explicitly defined.


```
. * Statistics > Summaries... > Tables > Two-way tables with measures...
. tabulate cancer alcohol [freq=patients] , column
                                                     {1}
+----+
| Key
|-----
   frequency
column percentage
. . . . . . . . . . . . . . . . .
Esophageal | Alcohol (gm/day)
Cancer 0-39 40-79 80-119 >= 120 | Total
+----
   No | 386 280 87 22 | 775
| 93.01 78.87 63.04 32.84 | 79.49
----
   Yes | 29 75 51 45 | 200
| 6.99 21.13 36.96 67.16 | 20.51
-----÷
                                      - - - - - -
  Total |
          415 355
                       138
                             67 |
                                       975
        100.00 100.00 100.00 100.00 100.00
 {1}
       The tabulate command produces one- and two-way frequency
       tables. The column option produces percentages of observations
       in each column.
```


logit can	cer i.age i.a	lcohol <mark>[freq</mark>	=patient	s			
	•						
.ogit estim	ates			Ν	o. of obs	=	975
				L	R chi2(8)	=	274.07
				F	rob > chi2	=	0.000
.og likelih	ood = -363.	7080768		F	seudo R2	=	0.2649
++							
000 1							
age 2	1 631112	1 080013	1 51	0 131	- 4856742	37	47899
age 2 3	1.631112	1.080013	1.51	0.131	4856742	3.7	747899 162114
age 2 3 4	1.631112 3.425834 3.943447	1.080013 1.038937 1.034622	1.51 3.30 3.81	0.131 0.001 0.000	4856742 1.389555 1.915624	3.7 5.4 5.9	747899 62114 971269
age 2 3 4 5	1.631112 3.425834 3.943447 4.356767	1.080013 1.038937 1.034622 1.041336	1.51 3.30 3.81 4.18	0.131 0.001 0.000 0.000	4856742 1.389555 1.915624 2.315786	3.7 5.4 5.9 6.3	747899 62114 971269 897747
age 2 3 4 5 6	1.631112 3.425834 3.943447 4.356767 4.424219	1.080013 1.038937 1.034622 1.041336 1.0914	1.51 3.30 3.81 4.18 4.05	0.131 0.001 0.000 0.000 0.000	4856742 1.389555 1.915624 2.315786 2.285115	3.7 5.4 5.9 6.3 6.5	747899 62114 971269 897747 663324
age 2 3 4 5 6 alcohol	1.631112 3.425834 3.943447 4.356767 4.424219	1.080013 1.038937 1.034622 1.041336 1.0914	1.51 3.30 3.81 4.18 4.05	0.131 0.001 0.000 0.000 0.000	4856742 1.389555 1.915624 2.315786 2.285115	3.7 5.4 5.9 6.3 6.5	747899 162114 171269 197747 1663324
age 2 3 5 6 alcohol 2	1.631112 3.425834 3.943447 4.356767 4.424219	1.080013 1.038937 1.034622 1.041336 1.0914	1.51 3.30 3.81 4.18 4.05 5.86	0.131 0.001 0.000 0.000 0.000	4856742 1.389555 1.915624 2.315786 2.285115 .9545384	3.7 5.4 5.9 6.3 6.5	747899 62114 971269 997747 663324 914081 {
age 2 3 5 6 alcohol 2 3	1.631112 3.425834 3.943447 4.356767 4.424219 1.43431 2.00711	1.080013 1.038937 1.034622 1.041336 1.0914 .2447858 .2776153	1.51 3.30 3.81 4.18 4.05 5.86 7.23	0.131 0.001 0.000 0.000 0.000	4856742 1.389555 1.915624 2.315786 2.285115 .9545384 1.462994	3.7 5.4 5.9 6.3 6.5 1.9 2.5	747899 62114 971269 997747 663324 914081 { 551226

{2} The parameter estimates of 2.alcohol, 3.alcohol and 4.alcohol estimate the log-odds ratio for cancer associated with alcohol doses of 40-79 gm/day, 80-119 gm/day and 120+ gm/day, respectively. These log-odds ratios are derived with respect to people who drank 0-39 grams a day. They are all adjusted for age. All of these statistics are significantly different from zero (P<0.0005).</p>

Image: Construction of the second	logit - Logistic Model by/i/in Weight Dependent variable: Cancer Options Offset variable: Retain perfect pred Constraints:	regression, reporting SE/Robust Reporting Maximizat Independent variables: i age i alcohol Suppress constant term	coefficients		
patients	Keep colinear vark	bles (rarely used)	logit - Logistic regression, Model by///n Weights SE/Robust Reg Weight type:	reporting coefficients	Help weights
			palents		Z

```
* Statistics > Postestimation > Linear combinations of estimates
  . lincom 3.alcohol - 2.alcohol, or
                                                                {3}
    ( 1) - [cancer] 2.alcohol + [cancer]3.alcohol = 0.0
   _____
      cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
     (1) | <mark>1.773226</mark> .4159625 2.44 0.015 <u>1.119669 2.808268</u>
[3] In general, lincom calculates any linear combination of parameter
   estimates, tests the null hypothesis that the true value of this combination
   equals zero, and gives a 95% confidence interval for this estimate.
   The or option exponentiates the linear combination and calculates the
   corresponding confidence interval.
   In this example 3.alcohol - 2.alcohol equals the log-odds ratio for cancer
   associated with drinking 8-119 gm/day compared to 40-79 gm/day. 3.alcohol
   -2.alcoh = 2.001 - 1.434 = 0.573, which is significantly different from zero
   with P = 0.015. The corresponding odds ratio is
       \exp[0.573] = 1.77. The 95% confidence interval for this difference is
       (1.1 - 2.8).
   Note that the null hypothesis that a log-odds ratio equals zero is equivalent
    to the null hypothesis that the corresponding odds ratio equals one.
```

	Linear expression:
	3 alcohol - 2 alcohol
	Exponentiate coefficients
	C exp(b)
	ODdds ratio
	C Hazard ratio
	C Incidence rate ratio
	CIK Cancel Submit
incom 4.ald 1) [cancer]	<pre>Dhol - 3.alcohol, or 3.alcohol + [cancer]4.alcohol = 0</pre>
incom 4.ald 1) [cancer] cancer	Concel Submit Chol - 3.alcohol, or 3.alcohol + [cancer]4.alcohol = 0 Odds Ratio Std. Err. z P> z [95% Conf. Interval]

ogit estima og likeliho	tes od = -363.7	080768		No. LR Pro Pse	of obs chi2(8) b > chi2 udo R2	= = =	975 274.07 0.0000 0.2649
cancer	Odds Ratio	Std. Err.	z	P> z	[95% Conf	. Int	erval]
aqe	+						
2	5.109555	5.518386	1.51	0.131	.6152822	42	.43183
3	30.74829	31.94554	3.30	0.001	4.013065	23	5.5949
4	51.59613	53.3825	3.81	0.000	6.791178	39	2.0027
5	78.00451	81.22889	4.18	0.000	10.13289	60	0.4908
6	83.44761	91.07472	4.05	0.000	9.826812	7	08.623
alcohol							
2	4.196747	1.027304	5.86	0.000	2.597471	6.	780704
3	7.441782	2.065953	7.23	0.000	4.318873	12	.82282
4	39.64687	14.92059	9.78	0.000	18.96139	8	2.8987

Logistic regression Number of obs = 975 LR chi2(8) = 262.07 Prob > chi2 = 0.0000 Pseudo R2 = 0.2649 cancer Odds Ratio Std. Err. z $P> z $ [95% Conf. Interval] age 2 5.109555 5.518386 1.51 0.131 .6152822 42.43183 3 30.74829 31.94554 3.30 0.001 4.013065 235.5949 4 51.59613 53.3825 3.81 0.000 6.791178 392.0027 5 78.00451 81.22889 4.18 0.000 10.13289 600.4908 6 83.44761 91.07472 4.05 0.000 9.826812 708.623 alcohol 1 .2382798 .0583275 -5.86 0.000 .1474773 .3849898 3 1.773226 .4159625 2.44 0.015 1.119669 2.808268 [6]
Log likelihood = -363.70808 Pseudo R2 = 0.2649 cancer Odds Ratio Std. Err. z P> z [95% Conf. Interval] age 2 5.109555 5.518386 1.51 0.131 .6152822 42.43183 3 30.74829 31.94554 3.30 0.001 4.013065 235.5949 4 51.59613 53.3825 3.81 0.000 6.791178 392.0027 5 78.00451 81.22889 4.18 0.000 10.13289 600.4908 6 83.44761 91.07472 4.05 0.000 9.826812 708.623 alcohol 1 .2382798 .0583275 -5.86 0.000 .1474773 .3849898 3 1.773226 .4159625 2.44 0.015 1.119669 2.808268 [6]
cancer Odds Ratio Std. Err. z P> z [95% Conf. Interval] age 2 5.109555 5.518386 1.51 0.131 .6152822 42.43183 3 30.74829 31.94554 3.30 0.001 4.013065 235.5949 4 51.59613 53.3825 3.81 0.000 6.791178 392.0027 5 78.00451 81.22889 4.18 0.000 10.13289 600.4908 6 83.44761 91.07472 4.05 0.000 9.826812 708.623 alcohol 1 .2382798 .0583275 -5.86 0.000 .1474773 .3849898 3 1.773226 .4159625 2.44 0.015 1.119669 2.808268 [6]
age 2 5.109555 5.518386 1.51 0.131 .6152822 42.43183 3 30.74829 31.94554 3.30 0.001 4.013065 235.5949 4 51.59613 53.3825 3.81 0.000 6.791178 392.0027 5 78.00451 81.22889 4.18 0.000 10.13289 600.4908 6 83.44761 91.07472 4.05 0.000 9.826812 708.623 alcohol 1 .2382798 .0583275 -5.86 0.000 .1474773 .3849898 3 1.773226 .4159625 2.44 0.015 1.119669 2.808268 {6}
2 5.109555 5.518386 1.51 0.131 .6152822 42.43183 3 30.74829 31.94554 3.30 0.001 4.013065 235.5949 4 51.59613 53.3825 3.81 0.000 6.791178 392.0027 5 78.00451 81.22889 4.18 0.000 10.13289 600.4908 6 83.44761 91.07472 4.05 0.000 9.826812 708.623 alcohol 1 .2382798 .0583275 -5.86 0.000 .1474773 .3849898 3 1.773226 .4159625 2.44 0.015 1.119669 2.808268 [6]
3 30.74829 31.94554 3.30 0.001 4.013065 235.5949 4 51.59613 53.3825 3.81 0.000 6.791178 392.0027 5 78.00451 81.22889 4.18 0.000 10.13289 600.4908 6 83.44761 91.07472 4.05 0.000 9.826812 708.623 alcohol 1 .2382798 .0583275 -5.86 0.000 .1474773 .3849898 3 1.773226 .4159625 2.44 0.015 1.119669 2.808268 [6]
4 51.59613 53.3825 3.81 0.000 6.791178 392.0027 5 78.00451 81.22889 4.18 0.000 10.13289 600.4908 6 83.44761 91.07472 4.05 0.000 9.826812 708.623 alcohol 1 1 .2382798 .0583275 -5.86 0.000 .1474773 .3849898 3 1.773226 .4159625 2.44 0.015 1.119669 2.808268 [6]
5 78.00451 81.22889 4.18 0.000 10.13289 600.4908 6 83.44761 91.07472 4.05 0.000 9.826812 708.623 alcohol 1 .2382798 .0583275 -5.86 0.000 .1474773 .3849898 3 1.773226 .4159625 2.44 0.015 1.119669 2.808268 [6]
6 83.44761 91.07472 4.05 0.000 9.826812 708.623
alcohol 1 .2382798 .0583275 -5.86 0.000 .1474773 .3849898 3 1.773226 .4159625 2.44 0.015 1.119669 2.808268 [6]
1 .2382798 .0583275 -5.86 0.000 .1474773 .3849898 3 1.773226 .4159625 2.44 0.015 1.119669 2.808268 [6]
3 1.773226 .4159625 2.44 0.015 1.119669 2.808268 [6]
4 9.447049 3.239241 6.55 0.000 4.824284 18.49948
(5) ib2 alcohol instructs Stata to include indicator covariates for
(\mathbf{r})
each value of alconol except $alconol - 2$. This makes an alconol value of
2 the baseline for odds ratios associated with this variable.
(6) The odds rate for level 3 drinkers compared to level 1 drinkers is
1.77, which is identical to the odds ratio obtained from the earlier lincom
statement.

9. Making Inferences About Odds Ratio Derived from Multiple Parameters

In more complex multiple logistic regression models we need to make inferences about odds ratios that are estimated from multiple parameters.

A simple example was given in the preceding example where the log odds ratio for cancer associated with alcohol level 3 compared to alcohol level 2 was of the form

 $\beta_3 - \beta_2$

To derive confidence intervals and perform hypothesis tests we need to be able to compute the standard errors of weighted sums of parameter estimates.

10. Estimating The Standard of Error of a Weighted Sum of **Regression Coefficients** Suppose that we have a model with q parameters. Let $b_1, b_2, ..., b_q$ be estimates of parameters $\beta_1, \beta_2, ..., \beta_q$ Let $c_1, c_2, ..., c_q$ be a set of known weights and let $f = \sum c_j b_j$ For example, in the preceding logistic regression model there are 5 age parameters (2.age, 3.age, ..., 6.age), three alcohol parameters (2.alcohol, 3.alcohol, 4.alcohol) and one constant parameter for a total of q = 9parameters. Let us rename these parameters so that β_2 and β_3 represent 2.alcohol and 3.alchol, respectively. Let $c_3 = 1, c_2 = -1, \text{ and } c_1 = c_4 = c_5 = \ldots = c_9 = 0$ Then $f = b_3 - b_2 = 2.0071 - 1.4343 = 0.5728$ And exp (f) = exp(0.5728) = 1.773 is the odds ratio of level 3 drinkers relative to level 2 drinkers.

Let $\frac{s_{jj}}{b_i}$ be the estimated variance of $\frac{b_j}{b_i}$; j = 1, ..., q and let $\frac{s_{ij}}{b_i}$ be the covariance of $\frac{b_i}{b_i}$ and $\frac{b_j}{b_i}$ for any $i \neq j$.

Then the variance of *f* equals:

$$s_{f}^{2} = \sum_{i=1}^{q} \sum_{j=1}^{q} c_{i} c_{j} s_{ij}$$

$$\{4.6\}$$

For large studies the 95% confidence interval for f is

$$f \pm 1.96*\sqrt{s_f^2} = f \pm 1.96s_f$$

When *f* estimates a log-odds ratio then the corresponding odds ratio is estimated by $\exp(f)$ with 95% confidence interval $\left[\exp(f - 1.96s_f), \exp(f + 1.96s_f)\right]$

11. The Estimated Variance-Covariance Matrix The estimates of s_{ij} are written in a square array $\begin{bmatrix} s_{11}, s_{12}, \dots, s_{1q} \\ s_{21}, s_{22}, \dots, s_{2q} \\ \cdot & \cdot \\ \cdot & \cdot \\ s_{q1}, s_{q2}, \dots, s_{qq} \end{bmatrix}$ which is called the estimated variance-covariance matrix. In our example comparing level 3 drinkers to level 2 drinkers $s_f^2 = s_{33} + s_{22} - 2s_{23}$ which gives $s_f = 0.2346$; this is the standard error of 3.alcohol -2.alcohol given in the preceding example.

You can obtain the **variance-covariance matrix** in Stata using the *estat vce* post estimation command. However, the *lincom* command is so powerful and flexible that we will usually not need to do this explicitly. If you are working with other statistical packages you may need to calculate equation {4.6} explicitly

_ogit regre:	ssion				No. of obs LR chi2(8) Prob > chi2 Pseudo R2	= = =	975 157.68 0.0000 0.1594
_og likeliho	ood = -415.	90235					
cancer	Odds Ratio	Std. Err.	z	P> z	[95% Conf	. Inte	erval]
age							
2	6.035932	6.433686	1.69	0.092	.7472235	48	75713
3	36.20831	37.10835	3.50	0.000	4.857896	269	9.8785
4	61.79318	63.10432	4.04	0.000	8.349838	457	7.3019
5	83.56952	85.86437	4.31	0.000	11.15506	626	5.0713
6	60.45383	64.52449	3.84	0.000	7.462882	489	9.7124
tobacco							
2	1.835482	.3781838	2.95	0.003	1.225655	2.7	748731 {1}
3	1.945172	.487733	2.65	0.008	1.189947	3.	179717
4	5.706139	1.725688	5.76	0.000	3.154398	1(0.3221
{1} Note	how simils	r the log-or	lds rati	os for	the 2 nd and 3	rd]o	vels of
(.) 1000 toba		If may had				6	
toba	cco exposure.	If we had a	assigned	i a sing	gie parameter i	tor to	oacco

apparate smoke - tebacce
<pre>. generate smoke = tobacco . * Data > Create > Other variable-transformation > Recode catigorical recode smoke 3=2 4=3 {2} (96 changes made)</pre>
{2} We want to combine the 2 nd and 3 rd levels of tobacco exposure. We do this by defining a new variable called <i>smoke</i> that is identical to <i>tobacco</i> and then using the <i>recode</i> statement, which in this example changes values of <i>smoke</i> = 3 to <i>smoke</i> = 2, and values of <i>smoke</i> = 4 to <i>smoke</i> = 3.

. label variable smoke "Smoking (gm/day)" . label define smoke 1 "0-9" 2 "10-29" 3 ">= 30" . label values smoke smoke . * Statistics > Summaries... > Tables > Table of summary statistics (table). . table smoke tobacco [freq=patients], row col {3} - - - - - - - - - - -Smoking | Tobacco (gm/day) (gm/day) | 0-9 10-19 20-29 >= 30 Total 0-9 | 525 525 236 132 368 82 82 10-29 >= 30 Total 525 236 132 82 975 {3} This table statement shows that the previous recode statement worked.

			1	
table - Tables of summary st	atistics	×		
Main by/if/in Weights Options				
Row variable:	Column variable:			
smoke	tobacco 💌			
Superrow variables:	Supercolumn variable:			
	toble. Tobles of		otistiss	
Statistics	table - Tables of		austics	
Frequency	Main by/if/in Weights 0	Iptions D		- 1
2 None	Weight type:			Help weights
3 None 💌	C None			
4 None	Frequency weights			
5 None	C Analutic weights			
	C Importance weights (rare)	🗉 table - T	ables of summary s	statistics
	Erectuanou unight	Main by/if/in	Weights Options	
O D	patients		Cell width	Casewise deletion
			Column-separation width	Add row totals
			Stub width	Add column totals
			Supercolumn-sep. width	Add supercolumn totals
				Sunnress all-missing rows
		Right	s: T	Show missing statistics with period
		. Indu		- cristi mong control parts
		Replace of	urrent data with table statistics -	
			Name new variables with pr	efix
		C Override dis	play format for numbers in cells	
				Create
				UK Lancel Submit

ogratic regr	ession			Number	r of obs	= 975	j
				LR ch:	i2(7)	= 157.64	ł
		_		Prob >	> chi2	= 0.0000	1
og likelihoo	d = -415.92589	9		Pseudo	5 R2	= 0.1593	j.
cancer	Odds Ratio	Std. Err.	Z	P> z	[95% Con	f. Interval]	
age							
2	6.037092	6.434914	1.69	0.092	.7473691	48.76637	1
3	36.2117	37.11182	3.50	0.000	4.85835	269.9038	5
4	61.79965	63.11096	4.04	0.000	8.350705	457.3503	5
5	83.52177	85.81492	4.31	0.000	11.14879	625.7078	\$
6	60.25337	64.30389	3.84	0.000	7.439742	487.9831	
smoke							
2	1.873669	.3421356	3.44	0.001	1.309972	2.679933	5
3	5.704954	1.725242	5.76	0.000	3.153836	10.31965	•
lincom 3.sm	oke - 2.smoke						
1 4 1 5	ncer]2.smoke +	F [cancer]3.s	moke = 0)			
(I) - [cai							

-> tobacco= Esophageal Cancer	10-19 Alcohol 0-39	(gm/day) 40-79	80-119	>= 120	Total	
No	74 88.10	68 80.00	30 61.22	6 33.33	178 75.42	
Yes	10 <mark>11.90</mark>	17 20.00	19 <mark>38.78</mark>	12 66.67	58 24.58	
Total 	84 100.00	85 100.00	49 100.00	18 100.00	236 236	
-> tobacco= Esophageal Cancer	20-29 Alcohol 0-39	(gm/day) 40-79	80-119	>= 120	Total	
No	37 88.10	47 75.81	10 62.50	5 41.67	99 75.00	
Yes	5 <mark>11.90</mark>	15 24.19	6 <mark>37.50</mark>	7 58.33	33 25.00	
Total	42 100.00	62 100.00	16 100.00	12 100.00	132 100.00	

Esophageal	Alcohol	(gm/day)				
Cancer	0-39	40-79	80-119	>= 120	Total	
No	23	20	5	3	51	
l	82.14	68.97	41.67	23.08	62.20	
Yes	5	9	7	10	31	
I	17.86	31.03	58.33	76.92	37.80	
Total	28	29	12	13	82	
I	100.00	100.00	100.00	100.00	100.00	
l'hese tables ncreases dra every level o	show tha amaticall f tobacco	at the prop y with inc consumpt	portion of reasing a tion.	study sub lcohol con	jects with cance sumption for	er

🖬 tabulate2 - Two-	way tables		×	
Row variable: cancer Test statistics Pearson's chi-squared Fisher's exact test Goodman and Kruskafr Likelihood+ratio chi-squa Kendall's tau-b	dvanced j Col ak ak ak ak ak ak ak ak ak ak	lumn variable: cohol Pearson's chi-squared Within-column relative frequencies Within-column relative frequencies Vathic-column relative frequencies vay tables vanced	×	
Cramer's V Treat missing values like + Do not wrap wide tables	Hepeat command by grou Variables that define groups: tobacco Restrict observations If: (expression) Use a range of observatio From 1 = to	tabulate2 - Two-way tables Main [by/i/in Weights Advanced] Weight type: None Frequency weights Analytic weights Inoportance weights (rare) Frequency weight patients		Help weights
		00	OK	Cancel Submit

13. Multiplicative Model of Effect of Smoking and Alcohol on Esophageal Cancer Risk Suppose that subjects either were or were not exposed to alcohol and tobacco and we did not include age in our model. Consider the model $logit(E(d_{ij} / m_{ij})) = \alpha + x_i\beta_1 + y_j\beta_2$ where $i = \begin{cases} 1: \text{ if patient drank} \\ 0: \text{ Otherwise} \end{cases}$ $j = \begin{cases} 1: \text{ if patient smoked} \\ 0: \text{ Otherwise} \end{cases}$ $x_i = i$ $y_j = j$ m_{ij} is the number of subjects with drinking status *i* and smoking status *j*. d_{ij} is the number of cancers with drinking status *i* and smoking status *j*. α, β_1 and β_2 are model parameters.

Thus the log-odds of a drinker with smoking status j is $logit(E(d_{1j} / m_{1j})) = \alpha + \beta_1 + y_j \beta_2$ {4.7} The log-odds of a non-drinker with smoking status j is $logit(E(d_{0j} / m_{0j})) = \alpha + y_j \beta_2$ Subtracting equation {4.8} from {4.7} gives that {4.8} $log\left(\frac{\pi_{1j} / (1 - \pi_{1j})}{\pi_{0j} / (1 - \pi_{0j})}\right) = \beta_1$ where π_{ij} is the probability that someone with drinking status i and smoking status j develops cancer. In other words, $exp(\beta_1)$ is the odds ratio for cancer in drinkers compared to nondrinkers adjusted for smoking. Note that this implies that the relative risk of drinking is the same in smokers and non-smokers.

By an identical argument, $\exp(\beta_2)$ is the odds ratio for cancer in smokers compared to non-smokers adjusted for drinking. For people who both drink and smoke the model is $\log it(E(d_{11} / m_{11})) = \alpha + \beta_1 + \beta_2$ {4.9} while for people who neither drink nor smoke the model is $\log it(E(d_{00} / m_{00})) = \alpha$ {4.10} Subtracting {4.9} from {4.10} give that the log-odds ratio for people who both smoke and drink relative to those who do neither is $\beta_1 + \beta_2$, and the corresponding odds ratio is $\exp(\beta_1) \times \exp(\beta_2)$. Thus our model implies that the odds ratio of having both risk factors equals the product of the individual odds ratio for drinking and smoking. It is for this reason that this is called a **multiplicative model**.

* Regress cancer against age, * Use a multiplicative model * Statistics > Binary outcomes	alcohol and smoke.	g odds	ratios)
. Togistic cancer 1.age 1.alcono	I I.Smoke [Ireq-patients]		{'}
ogistic regression	Number of obs	=	975
	Prob > chi2	-	0.0000
og likelihood = <mark>-351.96823</mark>	Pseudo R2	=	0.2886

cancer	Odds Ratio	Std. Err.	Z	P> z	[95% Conf.	Interval]
age	I					
2	7.262526	8.017757	1.80	0.073	.834391	63.21291
3	43.65627	46.62635	3.54	0.000	5.381893	354.1263
4	76.3655	81.33339	4.07	0.000	9.469377	615.8472
5	133.7632	143.9793	4.55	0.000	16.22277	1102.93
6	124.4262	139.5094	4.30	0.000	13.82058	1120.205
alcohol						
2	4.213304	1.05191	5.76	0.000	2.582905	6.872854
3	7.222005	2.053957	6.95	0.000	4.135936	12.61077
4	36.7912	14.17012	9.36	0.000	17.29434	78.26794
	!					
Smoke	1 502701	3200884	2 32	0.021	1 074154	2 361577
2	5 159309	1 775207	2.32	0.021	2 628521	10 12679
	0.100000	1.775207		0.000	2.020021	10.12075
<mark>{2}</mark> Th	e odds ratio	o for level 2 d	lrinkers	relative	to level 1]
dr	inkers adjus	sted for age a	and smo	oking 18 4	i.21 .	

```
. lincom 2.alcohol + 2.smoke
( 1) [cancer]2.alcohol + [cancer]2.smoke = 0
cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
(1) 6.710535 2.110331 6.05 0.000 3.623022 12.4292 3
. lincom 3.alcohol + 2.smoke
 ( 1) [cancer]3.alcohol + [cancer]2.smoke = 0
  cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
  (1) | 11.5025 3.877641 7.25 0.000 5.940747 22.27118
. lincom 4.alcohol + 2.smoke
( 1) [cancer]4.alcohol + [cancer]2.smoke = 0
  cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
 (1) | 58.59739 25.19568 9.47 0.000 25.22777 136.1061
   -----
                   -----
```


cancer	Odds Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
(1)	21.73774	9.508636	7.04	0.000	9.223106	51.23319
cancer	Odds Batio	Std Err		, 	[95% Conf	Intervall
cancer	/ Odds Ratio	Std. Err.	 z	P> z	[95% Conf.	Intervall
(1)	+ <mark>37.26056</mark>	17.06685	7.90	0.000	15.18324	91.43957
	cohol + 3.smoł	(e				
lincom 4.al						
lincom 4.al	r]4.alcohol +	[cancer]3.sm	oke = 0			
lincom 4.al 1) [cance cancer	r]4.alcohol + Odds Ratio	[cancer]3.sm Std. Err.	oke = 0 z	P> z	[95% Conf.	Interval]

The preceding analyses are summarized in the following table. Note that the multiplicative assumption holds. E.g. $36.8 \times 5.16 = 190$

Daily Alcohol	Daily Tobacco Consumption							
Comsumption	0-9 gm		10-29	gm	30gm			
	Odds Ratio	95% Cl	Odds Ratio	95% CI	Odds Ratio	95% CI		
0-39 gm	1.0*		1.59	(1.1 - 2.4)	5.16	(2.6 - 10		
40-79 gm	4.21	(2.6 - 6.9)	6.71	(3.6 - 12)	21.7	(9.2 - 51		
80-119 gm	7.22	(4.1 - 13)	11.5	(5.9 - 22)	37.3	(15 - 91)		
120 gm.	36.8	(17 - 78)	58.6	(25 - 140)	190	(67 - 540		
* Denominator of o	odds ratios							
This model s consumption	uggests tha has an eno	t combine rmous effe	d heavy alco ect on the ris	ohol and to sk of esopl	bacco nageal canco	er.		
14. Modeling the Effect of Alcohol and Tobacco on Cancer Risk with Interaction

Let us first return to the simple example where people either do or do not drink or smoke and where we do not adjust for age. Our multiplicative model was

$$logit(E(d_{ij} / m_{ij})) = \alpha + x_i \beta_1 + y_j \beta_2$$

$$\{4.11\}$$

We allow alcohol and tobacco to have a synergistic effect on cancer odds by including a fourth parameter as follows

$$logit(E(d_{ij} / m_{ij})) = \alpha + x_i\beta_1 + y_j\beta_2 + x_iy_j\beta_3$$

$$\{4.12\}$$

Then β_3 only enters the model for people who both smoke and drink. By the usual arguments...

1	alcohol among non-smokers,
32	is the log odds ratio for cancer associated with smoking among non-drinkers,
$\beta_1 + \beta_3$	is the log odds ratio for cancer associated with alcohol among smokers ,
$\beta_1 + \beta_2 + \beta_3$	is the log odds ratio for cancer associated with people who smoke and drink <u>compared</u> to those who are both non-smokers and non-drinkers .

We now apply this interpretation to the esophageal cancer data. 5.20.EsophagelaCa.ClassVersion.log continues as follows: * Regress cancer against age, alcohol and smoke. * Include alcohol-smoke interaction terms. * * Statistics > Binary outcomes > Logistic regression (reporting odds ratios) logistic cancer i.age alcohol##smoke [freq=patients], {1} Logistic regression Number of obs = 975 LR chi2(16) = 290.90 Prob > chi2 = 0.0000 Log likelihood = -349.29335 Pseudo R2 = 0.2940

cancer	Odds Ratio	Std. Err.	Z	P> z	[95% Conf.	Interval
age						
2	6.697614	7.41052	1.72	0.086	.7657997	58.5767
3	40.1626	42.67457	3.48	0.001	5.004744	322.301
4	69.55115	73.73699	4.00	0.000	8.707117	555.564
5	123.0645	131.6754	4.50	0.000	15.11374	1002.0
6	118.8368	133.2538	4.26	0.000	13.19724	1070.08
alcohol						
2	7.554406	3.043769	5.02	0.000	3.429574	16.6402
3	12.71358	5.825002	5.55	0.000	5.179306	31.2078
4	65.07188	39.54145	6.87	0.000	19.7767	214.10
smoke						
2	3.800862	1.703912	2.98	0.003	1.578671	9.15108
3	8.651205	5.569301	3.35	0.001	2.449667	30.5524
alcohol#						
smoke						
22	.3251915	.1746668	-2.09	0.036	.1134859	.931829
23	.5033299	.4154539	-0.83	0.406	.0998302	2.5377
32	.3341452	.2008274	-1.82	0.068	.1028839	1.08523
33	.657279	.6598915	-0.42	0.676	.0918681	4.70256
4 2	.3731549	.301804	-1.22	0.223	.076462	1.82109
43	.3489097	.4210291	-0.87	0.383	.032777	3.71413

Options Offset variable:	ke Indiction Logistic repression reporting adds ratios
Retain perfect predictor variables	Model bull/in Weinhts SE/Robust Reporting Maximization
Keep collinear variables (rarely used)	Weight type: None Frequency weights Importance weights (rare) Frequency weight: Patients
	OK Cancel Submit

MPH Program, Biostatistics II W.D. Dupont

. lincom 2.alcohol + 2.smoke + 2.alcoho (1) [cancer]2.alcohol + [cancer]2.smo cancer Odds Ratio Std. Err. (1) 9.337306 3.826162	#2.smoke {2} oke + [cancer]2.alcohol#2.smoke = 0 z P> z 5.45 0.000 4.182379 20.84586
{2} This statement calculates the odds ratio for men in the second strata of alcohol and smoke relative to men in the first strata of both of these variables. This odds ratio of 9.33 is adjusted for age. 2.alcohol#2.smoke represents the parameter associated with the product of the covariates 2.alcohol and 2.smoke.	Incom - Linear combinations of estimators Zakohol + 2 smoke + 2 akohol#2 smoke Exponentiate coefficients Codds ratio Accepted ratio Accepted ratio Confidence level Confidence level DK Cancel Submit

cancer	0dds	Ratio	Std. Err.	z	P> z	[95% Conf.	Interval
(1)	32	.89498	19.73769	5.82	0.000	10.14824	106.627
	+						
(1)	16	.14675	7.152595	6.28	0.000	6.776802	38.4720

. lincom 3.alcohol + 3.smoke + 3.alcohol#3.smoke (1) [cancer]3.alcohol + [cancer]3.smoke + [cancer]3.alcohol#3.smoke = 0 _____ cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] (1) **72.29267** 57.80896 5.35 0.000 15.08098 346.5446 . lincom 4.alcohol + 2.smoke + 4.alcohol#2.smoke (1) [cancer]4.alcohol + [cancer]2.smoke + [cancer]4.alcohol#2.smoke = 0 _____ cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] (1) | 92.29212 53.97508 7.74 0.000 29.33307 290.3833 . lincom 4.alcohol + 3.smoke + 4.alcohol#3.smoke (1) [cancer]4.alcohol + [cancer]3.smoke + [cancer]4.alcohol#3.smoke = 0 cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] (1) | 196.4188 189.1684 5.48 0.000 29.74417 1297.072

Daily Tobacco Consumption							
0 – 9 gm		10	– 29 gm	2	30 gm		
Odds Ratio	95% Confidence Interval	Odds Ratio	95% Confidence Interval	Odds Ratio	95% Confidence Interval		
1.0*		3.8	(1.6 – 9.2)	8.65	(2.4 – 31)		
7.55	(3.4 – 17)	9.34	(4.2 – 21)	32.9	(10 – 110)		
12.7	(5.2 – 31)	16.1	(6.8 – 38)	72.3	(15 – 350)		
65.1	(20 – 210)	92.3	(29 – 290)	196	(30 – 1300)		
dds ratios	6						
4.2 are o ncreased wide, pa rvals are r e para r	uite consiste drinking and articularly for wider in Ta neters.	nt , and b d smokin the most ble 4.2 b	oth indicate a ng. Note that t heavily expos because they as	dramatic the coi sed subje re derive	increase nfidence cts. The d from a		
	0 Odds Ratio 1.0* 7.55 12.7 65.1 dds ratios 4.2 are g ncreased wide, pa rvals are re param	$\begin{array}{c c} 0-9 \text{ gm} \\ \hline 0-9 \text{ gm} \\ \hline 0 \text{ dds} & 95\% \\ \hline \text{Confidence} \\ \hline 1.0^{*} \\ 7.55 & (3.4-17) \\ 12.7 & (5.2-31) \\ 65.1 & (20-210) \\ \hline \text{dds ratios} \\ \hline 4.2 \text{ are quite consistent} \\ \hline 4.2 \text{ are quite consistent} \\ \hline 1.0^{*}	Daily Tobac $0 - 9 \text{ gm}$ 10Odds Ratio95% Confidence IntervalOdds Ratio 1.0^* 3.8 7.55 $(3.4 - 17)$ 9.34 12.7 $(5.2 - 31)$ 16.1 65.1 $(20 - 210)$ 92.3dds ratios4.2 are quite consistent, and b ncreased drinking and smokin wide, particularly for the most rvals are wider in Table 4.2 b re parameters.	Daily Tobacco Consumpti $0-9 \text{ gm}$ $10-29 \text{ gm}$ Odds Ratio95% Confidence IntervalOdds Ratio95% Confidence Interval 1.0^* 3.8 $(1.6-9.2)$ 7.55 $(3.4-17)$ 9.34 $(4.2-21)$ 12.7 $(5.2-31)$ 16.1 $(6.8-38)$ 65.1 $(20-210)$ 92.3 $(29-290)$ dds ratios 4.2 are quite consistent, and both indicate a ncreased drinking and smoking. Note that wide, particularly for the most heavily exposite rvals are wider in Table 4.2 because they are parameters.	Daily Tobacco Consumption $0-9 \text{ gm}$ $10-29 \text{ gm}$ \geq Odds Ratio95% Confidence IntervalOdds Ratio95% Confidence IntervalOdds Ratio 1.0^* 3.8 $(1.6-9.2)$ 8.65 7.55 $(3.4-17)$ 9.34 $(4.2-21)$ 32.9 12.7 $(5.2-31)$ 16.1 $(6.8-38)$ 72.3 65.1 $(20-210)$ 92.3 $(29-290)$ 196 dds ratios4.2 are quite consistent, and both indicate a dramatic ncreased drinking and smoking. Note that the con- wide, particularly for the most heavily exposed subjective rvals are wider in Table 4.2 because they are derived reparameters.		

Daily Alcohol Comsumption	Daily lobacco Consumption							
	0-9 gm		10-29) gm	30gm			
	Odds Ratio	95% CI	Odds Ratio	95% CI	Odds Ratio	95% CI		
0-39 gm	1.0*		1.59	(1.1 - 2.4)	5.16	(2.6 - 10)		
40-79 gm	4.21	(2.6 - 6.9)	6.71	(3.6 - 12)	21.7	(9.2 - 51)		
80-119 gm	7.22	(4.1 - 13)	11.5	(5.9 - 22)	37.3	(15 - 91)		
120 gm.	36.8	(17 - 78)	58.6	(25 - 140)	190	(67 - 540)		
* Denominator of d	odds ratios							

15. Model Fitting: Nested Models and Model Deviance

A model is said to be **nested** within a second model if the first model is a special case of the second.

For example, the multiplicative model {4.11} discussed before was $logit(E(d_{ii} / m_{ii})) = \alpha + x_i\beta_1 + y_j\beta_2$

while model {4.12} contained an interaction term and was

 $\operatorname{logit}(E(d_{ij} / m_{ij})) = \alpha + x_i\beta_1 + y_j\beta_2 + x_iy_j\beta_3$

Model {4.11} is nested within model {4.12} since model {4.11} is a special case of model {4.12} with $\beta_3 = 0$.

The model **Deviance** D is a statistic derived from the likelihood function that measures goodness of fit of the data to a specific model. Let log(L) denote the maximum value of the log likelihood function. Then the deviance is given by

 $D = K - 2\log(L)$

 $\{4.13\}$

for some constant K that is independent of the model parameters.

If the model is correct then for large sample sizes *D* has a χ^2 distribution with degrees of freedom equal to the number of observations minus the number of parameters. Regardless of the true model, *D* is a non-negative number. Large values of *D* indicate poor model fit; a perfect fit has D = 0.

Suppose that D_1 and D_2 are deviances from two models with model 1 nested in model 2. Then it can be shown that if model 1 is true then $\Delta D = D_1 - D_2$ has an approximately χ^2 distribution with the number of degrees of freedom equal to the number of parameters in model 2 minus the number of parameters in model 1.

Equivalently, $\Delta D = D_1 - D_2$

 $= K - 2\log(L_1) - (K - 2\log(L_2)) = 2(\log(L_2) - \log(L_1))$

We use the reduction in deviance as a guide to building reasonable models for our data.

For example, in the multiplicative model of analyzed above the log likelihood was	alcohol and tobacco le	vels	
$\log(L) = -351.96823$			
. * Statistics > Binary outcomes > Logistic . logistic cancer i.age i.alcohol i.smoke [regression (reporting freq=patients]	j odds	ratios)
Logistic regression	Number of obs LR chi2(10) Brob > chi2	= =	975 285.55
Log likelihood = <mark>-351.96823</mark>	Pseudo R2	=	0.2886
The corresponding model with the 6 intera $log(L) = -349.29335$	action terms has a log	likeli	hood of
. * Statistics > Binary outcomes > Logistic . logistic cancer i.age alcohol##smoke [fro	c regression (reportin eq=patients],	g odd:	s ratios)
Logistic regression	Number of obs LR chi2(16)	= =	975 290.90
Log likelihood = <mark>-349.29335</mark>	Pseudo R2	=	0.2940

MPH Program, Biostatistics II W.D. Dupont

For example, in the multiplicative model of alcohol and tobacco levels analyzed above the log likelihood was

 $\log(L_1) = -351.96823$

The corresponding model with the 6 interaction terms has a log likelihood of

 $\log(L_2) = -349.29335$

 $\Delta D = 2\left(\log\left(L_2\right) - \log\left(L_1\right)\right)$

= 2(-349.29335 + 351.96823)

= 5.35

In general, I am guided by deviance reduction statistics when deciding whether to include variables that may, or may not be true confounders, but that are not intrinsically of interest.

If I am interested in the joint effects of 2 or more variables, I usually include the interaction term unless the inclusion of the interaction parameter has almost no effect on the resulting relative risk estimates.

There are no hard and fast guidelines to model building other than that it is best not to include uninteresting variables in the model that have a trivial effect on the model deviance.

I think I personally would go with Table 4.2 over 4.1 in spite of the lack of evidence of interaction. The odds ratio for both \geq 120 gm alcohol and \geq 30 gm tobacco is so large that I would worry that we were being misled by not taking into account a small but real interaction term.

It would also be acceptable to say that we analyzed the data both ways, found no evidence of interaction, got comparable results and were presenting the multiplicative model results only.

Daily Alcohol	Daily Tobacco Consumption							
Comsumption	0-9 gm		10-29	gm	30gm			
	Odds Ratio	95% CI	Odds Ratio	95% CI	Odds Ratio	95% CI		
0-39 gm	1.0*		1.59	(1.1 - 2.4)	5.16	(2.6 - 10		
40-79 gm	4.21	(2.6 - 6.9)	6.71	(3.6 - 12)	21.7	(9.2 - 51		
80-119 gm	7.22	(4.1 - 13)	11.5	(5.9 - 22)	37.3	(15 - 91		
120 gm.	36.8	(17 - 78)	58.6	(25 - 140)	190	(67 - 540		

Tab	le 4.2. Effect of Alcohol and Tobacco on Esophageal Cancer Risk	
I	Vodel with all 2-Way Interaction Terms Adjusted for Age	
	Daily Tobacco Consumption	

Daily Alcohol	0	– 9 gm	10	– 29 gm	<u>></u> 30 gm		
Comsumption	Odds Ratio	95% Confidence Interval	Odds Ratio	95% Confidence Interval	Odds Ratio	95% Confidence Interval	
0 – 39 gm	1.0*		3.8	(1.6 – 9.2)	8.65	(2.4 – 31)	
40 – 79 gm	7.55	(3.4 – 17)	9.34	(4.2 – 21)	32.9	(10 – 110)	
80 – 119 gm	12.7	(5.2 – 31)	16.1	(6.8 – 38)	72.3	(15 – 350)	
<u>></u> 120 gm	65.1	(20 – 210)	92.3	(29 – 290)	196	(30 – 1300)	

* Denominator of odds ratios

MPH Program, Biostatistics II W.D. Dupont

$$\text{Let} \quad \hat{\pi}_j = \frac{\exp\left[\hat{\alpha} + \hat{\beta}_1 x_{j_1} + \hat{\beta}_2 x_{j_2} + \dots + \hat{\beta}_q x_{j_q}\right]}{1 + \exp\left[\hat{\alpha} + \hat{\beta}_1 x_{j_1} + \hat{\beta}_2 x_{j_2} + \dots + \hat{\beta}_q x_{j_q}\right]}$$

be the estimate of π_j obtained by substituting the maximum likelihood parameter estimates into the logistic probability function.

Then the **residual** for the *j*th covariate pattern is $d_j - n_j \hat{\pi}_j$

The **Pearson residual** is $r_{j(Pearson)} = (d_j - n_j \hat{\pi}_j) / \sqrt{n_j \hat{\pi}_j (1 - \hat{\pi}_j)}$

which should have a mean of 0 and a standard deviation of 1 if the model is correct and if $\sqrt{n_j \hat{\pi}_j (1 - \hat{\pi}_j)}$ is a good estimate of the standard error of $d_j - n_j \hat{\pi}_j$.

The **leverage** h_i is analogous to leverage in linear regression.

It measures to potential of a covariate pattern to influence our parameter estimates if the associated residual is large.

For our purposes we can define h_j by the formula $\operatorname{var}\left[d_i - n_j \hat{\pi}_j\right] = n_j \hat{\pi}_j (1 - \hat{\pi}_j)(1 - h_j)$

$$\cong \operatorname{var} \left[d_j - n_j \pi_j \right] \left(1 - h_j \right)$$

In other words, $100(1-h_j)$ is the percent reduction in the variance of the $j^{\rm th}$ residual due to the fact that the estimate of $n_j\hat{\pi}_j$ is pulled towards d_j .

The value of h_i lies between 0 and 1.

When h_j is very small d_j has almost no effect on its estimated expected value $n_j \hat{\pi}_j$.

When h_j is close to 1, then $d_j\cong n_j\hat{\pi}_j~$. This implies that both the residual $d_j-n_j\hat{\pi}_j~$ and its variance will be close to zero.

The **standardized Pearson residual** for the j^{th} covariate pattern is the residual divided by its standard error. That is,

$$r_{sj} = \frac{d_j - n_j \hat{\pi}_j}{\sqrt{n_j \hat{\pi}_j \left(1 - \hat{\pi}_j\right) \left(1 - h_j\right)}} = \frac{r_{j(Pearson)}}{\sqrt{1 - h_j}}$$

This residual is analogous to the studentized residual for linear regression.

 r_{sj} has mean 0 and standard error 1

is not necessarily normally distributed when n_j is small.

The square of the standardized Pearson residual is denoted

$$\Delta X_j^2 = r_{sj}^2 = r_{j(Pearson)}^2 / (1 - h_j)$$

We will use the critical value $(z_{0.025})^2 = 1.96^2 = 3.84$ as a very rough guide to identifying large values of ΔX_i^2 .

Approximately 95% of these squared residuals should be <u>less than</u> 3.84 if the logistic regression model is correct.

The $\Delta \hat{\beta}_j$ **influence statistic** is a measure of the influence of the *j*th covariate pattern on all of the parameter estimates taken together. It equals $\Delta \hat{\beta}_j = r_{si}^2 h_j / (1 - h_j)$

Note that $\Delta \hat{\beta}_j$ increases with both the magnitude of the standardized residual and the size of the leverage.

It is analogous to Cook's distance for linear regression.

Covariate patterns associated with large values of ΔX_j^2 and $\Delta \hat{\beta}_j$ merit special attention.

The following plot is for our model of alcohol and tobacco dose with interaction terms and plots ΔX_i^2 against $\hat{\pi}_j$

The area of the circles is proportional to $\Delta \hat{\beta}_i$

Daily Drug Consumption		Complete Data		Deleted Covariate Pattern				
					A†	B‡		
Tobacco	Alcohol	Odds Ratio	95% Confidence Interval	Odds Ratio	Percent Change from Complete Data	Odds Ratio	Percent Change from Complete Data	
0 – 9 gm	0 – 39 gm	1.0*		1.0*		1.0*		
0 – 9 gm	40 – 79 gm	7.55	(3.4 – 17)	7.53	-0.26%	7.70	2.0%	
0 – 9 gm	80 – 119 gm	12.7	(5.2 – 31)	12.6	-0.79%	13.0	2.4%	
0 – 9 gm	<u>></u> 120 gm.	65.1	(20 – 210)	274	321%	66.8	2.6%	
10 – 29 gm	0 – 39 gm	3.80	(1.6 – 9.2)	3.77	-0.79%	3.86	1.6%	
10 – 29 gm	40 – 79 gm	9.34	(4.2 – 21)	9.30	-0.43%	9.53	2.0%	
10 – 29 gm	80 – 119 gm	16.1	(6.8 – 38)	16.0	-0.62%	16.6	3.1%	
10 – 29 gm	<u>></u> 120 gm.	92.3	(29 – 290)	95.4	3.4%	94.0	1.8%	
<u>></u> 30gm	0 – 39 gm	8.65	(2.4 – 31)	8.66	0.12%	1.88	-78%	
<u>></u> 30gm	40 – 79 gm	32.9	(10 – 110)	33.7	2.4%	33.5	1.8%	
<u>></u> 30gm	80 – 119 gm	72.3	(15 – 350)	73.0	0.97%	74.2	2.6%	
<u>></u> 30gm	<u>></u> 120 gm.	196	(30 – 1300)	198	1.02%	203	3.6%	

↑ Patients age 55 – 64 who drink at least 120 gm a day and smoke 0 – 9 gm a day deleted

 $\ddagger\,$ Patients age 55 – 64 who drink 0 – 39 gm a day and smoke at least 30 gm a day deleted

Daily Alcohol		Da	aily Tobacco (Consumption		
Comsumption	0-9 9	gm	10-29) gm	30	gm
	Odds Ratio	95% CI	Odds Ratio	95% CI	Odds Ratio	95% CI
Multiplicative Mod	el Adjusted	to Age				
0-39 gm	1.0*		1.59	(1.1 - 2.4)	5.16	(2.6 - 10)
40-79 gm	4.21	(2.6 - 6.9)	6.71	(3.6 - 12)	21.7	(9.2 - 51)
80-119 gm	7.22	(4.1 - 13)	11.5	(5.9 - 22)	37.3	(15 - 91)
120 gm.	36.8	(17 - 78)	58.6	(25 - 140)	190	(67 - 540)
Model with all 2-W	Vay Interacti	on Terms A	djusted for A	lge		
0 – 39 gm	1.0*		3.8	(1.6 – 9.2)	8.65	(2.4 – 31)
40 – 79 gm	7.55	(3.4 – 17)	9.34	(4.2 – 21)	32.9	(10 – 110)
80 – 119 gm	12.7	(5.2 – 31)	16.1	(6.8 – 38)	72.3	(15 – 350)
>120 gm	65.1	(20 – 210)	92.3	(29 – 290)	196	(30 – 1300

We h	ave 975 patients,
	200 cases,
	68 unique covariate patterns
	17 parameters in the interactive model.
Over	fitting is certainly a concern
Still (mark	the effect of dose of tobacco and alcohol on risk is very ed, which makes the interactive model tempting to use.
It is a we re away	a pity that age, alcohol and tobacco were categorized befor ceived this data. It is always a mistake to throw such dat
If we with	had the continuous data we could fit a cubic spline model
W1011	6 spline parameters: 2 each for age alcohol and tobacco
	4 interaction parameters for a total of

(2) Defir	o notan dand to cause	1 the stands	ndigod	Deerson	
resic	le <i>rstandara</i> to equa lual r _{si} .	i the stanua	ruizeu	rearson	
	~				
	predict - Prediction af	ter estimation		_ 🗆 🗙	
	Main if/in Options				
	New variable name:		New variable	type:	
	rstandard		float	•	
	Produce:				
	C Predicted probability of a positive	outcome			
	C Standard error of the linear predic	tion			
	C Delta-Beta influence statistic				
	C Deviance residual				
	C Delta chi-squared influence statis	tic			
	C Leverage				
	C Sequential number of the covaria	te pattern			
	C Pearson residual (adjusted for # s	haring covariate pattern)			
	Standardized Pearson residual (a	djusted for # sharing covariate	pattern)		
	C Equation-level scores				

```
generate dx2_pos = dx2 if rstandard >= 0
                                                                                    {4}
 (137 missing values generated)
   generate dx2_neg = dx2 if rstandard < 0</pre>
 (112 missing values generated)
 . label variable dx2 pos "Positive residual"
 . label variable dx2_neg "Negative residual"
 . label variable p
                                                111
        "Estimate of {&pi} for the j{superscript:th} Covariate Pattern"
                                                                                    {5}
{4} We are going to draw a scatterplot of \Delta X_j^2 against \hat{\pi}_j. We would like to
     color code the plotting symbols to indicate if the residual is positive or
     negative. This command defines dx2\_pos to equal \Delta X_i^2 if and only if r_{si}
     is non-negative. The next command defines dx2\_neg to equal \Delta X_j^2 if r_{sj}
     is negative.
{5}
    Greek lettters, superscripts, italics, etc can be entered in variable labels.
     \{\&pi\}\ enters the letter \pi into the label. {superscript:th} writes the letters
     "th" as a superscript.
```

Variab	les Manager					_ [] ;	K
inter filter t	æxt here						
Drag a coli	umn header here to group by that column.			*	Variable Prope	rties	ą
Variable	Label	Type	Format	Value Label	Name		
ane	Ane (vears)	float	%9.0a	ane	P		
alcohol	Alcohol (am/day)	float	%9.0g	alcohol	Label		
tobacco	Tobarco (gm/day)	float	%9.0g	tobacco	Estimate of {8	<pre>.pi} for the j{superscript:th} Column .pi</pre>	
cancer	Esophageal Cancer	float	%9.0g	vesno	Туре		
patients	Number of Subjects	float	%9.0a		float	•	
heavy	Heavy Alcohol Consumption	float	%9.0a	heavy	Format		
smoke	Smoking (gm/day)	float	%9.0a	smoke	%9.0g	Create	
p 🗕	Estimate of {π} for the i{superscript:th} Covariate Pattern	float	%9.0q		Value Label		
dx2	H+L dX^2	float	%9.0g			▼ Manage	
rstandard	standardized Pearson residual	float	%9.0q		Notes		
dx2_pos	Positive residual	float	%9.0q		No notes	Manage	
dx2_neg	Negative residual	float	%9.0q				
dbeta	Pregibon's dbeta	float	%9.0g		< >	Reset Apply	
bubble		float	%9.0g				
d			-				
<u></u>				• •		United and Miller	
eady						Vars: 14 CAP NUM	11.
MyDocs\MP	PHV ectureNotes\ClassDol.orData\logistic regression					CAP NUM O	R

twoway - Twoway graphs Plots it/in Yaxis Xaxis Titles Legend Over	all By	Marker weights	×
Plot definitions: Create Plot 1 Plot 6 Plot 1 Plot 6 Plot 1 Plot 6 Plot 1 Plot 6 Plot 1 Plot 6 Plot 6 Pl	and type Basic plots: (select typ Scatter Connected Area Ba Spike Spike X variable:	Weight type: None Frequency weights Analytic weights Analytic weight: doeta n x variable	Help weights
Marker properties Main Advance Main Symbol: Holow cicle	Main Advanced Advanced marker properties Fill color: Default Outline color: Default Utine color: Default Dutine width: meditick Add jitter to markers Noise factor:		brit

🔳 twoway - Twoway graphs	_ 🗆 X	
Plots in/in Yaxis Xaxis Titles Legend Overall By		
Plot definitions:		
Red bubbles		
E Diat 2	Marker weights	<u>></u>
	Weight type:	Help weights
Fill #/m PS	C None	
Choose a plot category and type	C Frequency weights	
Basic plots Basic plots Basic plots Scatter	Sampling weights Analytic weights	
C Fit plots Line Connected		
(s C Immediate plots Area Bar	dbeta	-
C Advanced plots Spike	_	_
Plot type: (scatterplot)		
Y variable: X variable:		
→ dx2_neg → p ✓ Sort on x	va B B	Accept Cancel
Add a second y axis on right		
Marker properties Marker weights *		
Marker properties		
Main Advanced Marker properties	Submit	
Marker properties Main Advanced		l
Symbol: Hollow circle Advanced marker properties		
Color: Blue Fill color: Default	•	
Size: Outline color: Default	•	
	k 🔻	
Add labels to markers		
Variable: Add jitter to markers		
Label color: Default Voise factor:		

🗉 twoway - Twoway graphs	Reference lines (y axis)
Plots if/in Yaxis X axis Titles Legend Overall By	Add lines to graph at specified y axis values:
Plot definitions: Red Flot 1 Blue Flot 2 Plots it/in Y axis X axis Titles Legend Overall By 1 bubbles Title: Squared Standardized Pearson Residual	→ Width: Medium thick ▼ Pattern: Default ▼ Color: Default ▼
Major tick/label properties Minor tick/label properties Axis line properties Axis tick and a properties Reference lines	Cancel Submit
Rule Labelt Ticks Giid Axis rule C Use default rule Rule C Suggest # of ticks 0 Minimum value	s tick and label properties (y axis) (minor X Labels Ticks Grid
	uggest # between major ticks lange/Deta lin Max bastom 10 Minimum value 10 Max 10 Minimum value 10 Minimum value 10 Minimum value 10 Deta
Rule Labels Ticks Grid C N Labels Show labels: Default V	ione axis rule determines the number of ticks and their relative positions.
Color Default Size:	
Label gap.	Accept Cancel Submit

🗉 twoway - Twoway graphs	
Plots if/in Yaxis Xaxis Titles Legend Overall By	Axis title properties (x axis)
	Text Box Advanced
Red Plot defin III twoway - Twoway graphs	
Blue Plot Plots if/in Yaxis Xaxis Titles Legend Overall By	l ext placement
bubbles	
	Properties Alignment: Default
	Inner gap: 2
Major tick/label properties Minor tick/label properties	Outer gap:
Axis line properties Axis scale properties	
Reference lines	
(scatter)	
	Cancel Submit
Place axis on opposite side of graph	П
🗉 Axis tick and label properties (x axis) (major 🗴	Axis tick and label properties (x axis) (minor X
Rule Labels Ticks Grid	Bule Labels Ticks Grid
C Lise default rule	Axis rule
C Suggest # of ticks	C Suggest # between major ticks
ORange/Delta → 1 Maximum value	Cagged w between major dots O
C Min Max	C Min Max
C Custom	C Custom
○ None	C None
The axis rule determines the number of ticks and their relative positions.	The axis rule determines the number of ticks and their relative positions.
Accept Cancel Submit	Accept Cancel Submit

19. Restricted Cubic Splines and Logistic Regression

In the following example we use restricted cubic splines to model the effect of baseline MAP on hospital mortality in the SUPPORT data set.

```
. * SUPPORTlogisticRCS.log
. *
 * Regress mortal status at discharge against MAP
. * in the SUPPORT data set (Knaus et al. 1995).
. *
. use "C:\WDDtext\3.25.2.SUPPORT.dta" , replace
.
. *
    Calculate the proportion of patients who die in hospital
. *
      stratified by MAP.
. *
. generate map_gr = round(map,5)
                                                                      {1}
. sort map_gr
. label variable map_gr "Mean Arterial Pressure (mm Hg)"
. * Data > Create or change data > Create new variable (extended)
. by map_gr: egen proportion = mean(fate)
                                                                      {2}
```

r all records with the s o-one indicator variable on of patients with the te = 1). This command y the by variable (map	ame value of <i>ma</i> e, <i>proportion</i> wil e same value of <i>n</i> l requires that t <i>p_gr</i>).	ap_gr. Since fat ll be equal to the map_gr who die he data set be
	one indicator variable on of patients with the te = 1). This command y the by variable (map	on of patients with the same value of $mathat{mathat{intermediate}}{te = 1}$. This command requires that to y the <i>by</i> variable (<i>map_gr</i>).

	Generate variable as type:		
proportion	Float	egen - Extensions to generate	
Egen function:	Egen function argument	Main	
Interquartile range Kurtosis	Expression:	Repeat command by groups	
Median absolute deviation Maximum		Variables that define groups:	100
Mean absolute deviation Mean		Imap_gr	-
Median	-	Restrict observations	
		If: (expression)	
			Create
		Use a range of observations	
		From: 1 to: 996	
		-	
	UK		
		Cance	I Submit
generate ra	te = 100*proportio	n	
		In Hoopital Montality Data (%)"	
label varia	ble rate "Observed	IN-RUSPILAL MURIALLY RALE (3)	


```
* Variables Manager
.
. drop p
  *
.
  *
     Repeat the preceding model using restricted cubic splines
.
  *
     with 5 knots at their default locations.
.
  *
.
. * Data > Create... > Other variable-creation... > linear and cubic...
. mkspline _Smap = map, cubic displayknots
                     knot1
                                 knot2
                                             knot3 knot4 knot5
               map | 47 66 78
                                                           106 129
  * Statistics > Binary outcomes > Logistic regression (reporting odds ratios)
.
. logistic fate S*
                                                                                            {8}
                                                          Number of obs =
Logistic regression
                                                                                      996
                                                          LR chi2(4)
Prob > chi2
                                                                            =
                                                                                   122.86 {9}
                                                                            =
                                                                                   0.0000
Log likelihood = -498.65571
                                                          Pseudo R2
                                                                                    0.1097
                                                                            =
      _____
       fate | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
     . . . . . . . . . . . . . . . . . . .

        Smap1
        .8998261
        .0182859
        -5.19
        0.000
        .8646907
        .9363892

        Smap2
        1.17328
        .2013998
        0.93
        0.352
        .838086
        1.642537

        Smap3
        1.0781
        .7263371
        0.11
        0.911
        .2878645
        4.037664

        Smap4
        .6236851
        .4083056
        -0.72
        0.471
        .1728672
        2.250185

                                                                .8646907
                                                                                  .9363892
                                                                              1.642537
                                                                .2878645 4.037664
.1728672 2.250185
```

(8) Regress *fate* against MAP using a 5-knot RCS logistic regression model.

(9) Testing the null hypothesis that mortality is unrelated to MAP under this model is equivalent to testing the null hypothesis that all of the parameters associated with the spline covariates are zero. The likelihood ratio χ^2 statistic to test this hypothesis equals 122.86. It has four degrees of freedom and is highly significant P < 0.00005.

. generate lodds_lb = logodds - 1.96*stderr . generate lodds_ub = logodds + 1.96*stderr . generate ub_p = exp(lodds_ub)/(1+exp(lodds_ub)) {13} . generate lb_p = exp(lodds_lb)/(1+exp(lodds_lb)) twoway rarea lb_p ub_p map, color(yellow) /// || line p map, lwidth(medthick) color(red) 111 scatter proportion map_gr, symbol(Oh) color(blue)
ylabel(O(.1)1, angle(O)) xlabel(20 (20) 180) > 111 Ш > 111 > > xmtick(25(5)175) ytitle(Probability of In-Hospital Death) /// legend(order(3 "Observed" "Mortality" 2 "Expected" "Mortality" /// 1 "95% Confidence" "Interval") rows(1)) > **[13]** The variables *lb_p* and *ub_p* are the lower and upper 95% confidence bounds for p, respectively.


```
. * Determine the spline covariates at MAP = 90
.
. list _S* if map == 90
                                                     {14}
    +----
   575. 90 11.82436 2.055919 .2569899
                                            {output omitted}
581. 90 11.82436 2.055919 .2569899 |
    ----+
. *
   Let or1 = _Smap1 minus the value of _Smap1 at 90.
. *
   Define or2, or3 and or3 in a similar fashion.
. generate or1 = _Smap1 - 90
. generate or2 = Smap2 - 11.82436
. generate or3 = _Smap3 - 2.055919
. generate or4 = Smap4 - .2569899
```


<pre>. * Calculate the log odds ratio for in-hospital death .* relative to patients with MAP = 90. .* .* Statistics > Postestimation > Nonlinear predictions .predictnl log_or = or1*_b[_Smap1] + or2*_b[_Smap2] . + or3*_b[_Smap3] +or4*_b[_Smap4], se(se_or)</pre>		{15} {16}
{15} Define <i>log_or</i> to be the mortal log odds ratio for comparison to patients with a MAP of 90. The p from the most recent regression command may commands and are named $_b[varname]$. For ex model $_b[_Smap2] = \hat{\beta}_2 = 1.17328$; $or2 = _Smap2$	the <i>i</i> th pati parameter be used in ample, in t p2 - 11.824	ent in estimates generate his RCS 36.
The command <i>predictnl</i> may be used to estimat of the parameter estimates. It is also very usef combinations of these estimates as is illustrated	e non-linea ul for calcu l here.	ar functions lating linear
{16} The option <i>se(se_or)</i> calculates a new variable cather at and order of the log odds not in	alled <i>se_or</i>	which equals

Generate variable:	Nonlinear expression:	_
New variable type: float	_Smap1] + or2"_bL_Smap2]+ or3"_bL_Smap3] + or4"_bL_Smap4] You may use the special functions predict[] and xb(] in the nonlinear expression; see the help.	
Additionally generate varia Standard errors: [se_or Wald test statistics: Lower and upper con Derivatives: (specify)	Ables containing:	
00	OK Cancel Submit	it

	Edit	Plots if/in Yaxis Xaxis Tit	les Legend Overal	By	1	
	Disable	Title:				
	Enable Move Up					
	Move Down	Major tick/label properties	Axis scale pro	properties		
		Reference lines		perues		
Press "Create" to define constructed by creating	a scatter, line, range, or other multiple plot definitions.	Hide axis	🔤 Axis s	cale proper	ies (y axis	5)
20		Place axis on opposite side of gra	ph 🔽 Use log	arithmic scale		
			E Reverse	e scale to run from n	aximum to minimu	m
			Exten	d range of axis scal	,	
	1	00		Lower Imit:	_	
				opportune]		
			00	Accept	Cancel	Subm

20. Frequency Matched Case-Control Studies

We often have access to many more potential control patients than case patients for case-control studies. If the distribution of some important confounding variable, such as age, differs markedly between cases and control, we may wish to adjust for this variable when designing the study. One way to do this is through **frequency matching**. The cases and potential controls are stratified into a number of groups based on, say, age. We then randomly select from each stratum the same number of controls as there are cases in the stratum. The data can then be analyzed by logistic regression with a classification variable to indicate the strata (see the analysis of the esophageal cancer and alcohol data in this chapter, Section 5 and 6).

It is important, however, to keep the strata fairly large if logistic regression is to be used for the analysis. Otherwise the estimates of the parameters of real interest may be seriously biased. Breslow and Day (Vol. I, p. 251-253) recommend that the strata be large enough so that each stratum contains at least 10 cases and 10 control. Even strata this large can lead to appreciable bias if the odds ratio being estimated is greater then 2.

Cited References	
Breslow, N. E. and N. E. Day (1980). Statistical Methods in Cancer Research: Vol. 1 - The Analysis of Case-Control Studies. Lyon, France, IARC Scientific Publications.	
Knaus,W.A., Harrell, F.E., Jr., Lynn, J., Goldman, L., Phillips, R.S., Connors, A.F., Jr. et al. The SUPPORT prognostic model. Objective estimates of survival for seriously ill hospitalized adults. Study to understand prognoses and preferences for outcomes and risks of treatments. Ann Intern Med. 1995; 122:191-203.	
Tuyns, A. J., G. Pequignot, et al. (1977). Le cancer de L'oesophage en Ille-e Vilaine en fonction des niveau de consommation d'alcool et de tabac. Des risques qui se multiplient. <i>Bull Cancer</i> 64: 45-60.	t- ;
For additional references on these notes see.	
Dupont WD. Statistical Modeling for Biomedical Researchers: A Simple Introduction to the Analysis of Complex Data. 2nd ed. Cambridge, U.K.: Cambridge University Press; 2009.	