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 Estimating relative risks from proportional hazards models
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Then the survival function is

= the probability of surviving until at least age t.

1. Survival and Cumulative Mortality Functions

Suppose we have a cohort of n people.

Let

ti be the age that the ith person dies, 

m[t] be the number of patients for whom t < ti , and

d[t] be the number of patients for whom ti < t .

The cumulative mortality function is

D[t] = Pr[ti < t]  = the probability of dying before age t.

 [ ] Pr iS t t t
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If ti is known for all members of the cohort we can estimate S(t) and 
D(t) by

the proportion who have died by age t.ˆ[ ] [ ] /D t d t n

ˆ[ ] [ ] /S t m t n the proportion of subjects who are alive at 
age t, and

a)  Example:  Survival among sepsis patients

Days 
Since 
Entry

Number of 
Patients Alive

Number 
of 

Deaths
Proportion Alive

0 n = m( 0 ) = 455 0 m( 0 ) / n  = 1.00
1 m( 1 ) = 423 32 m( 1 ) / n  = 0.93
2 m( 2 ) = 410 45 m( 2 ) / n  = 0.90
3 m( 3 ) = 400 55 m( 3 ) / n  = 0.88
4 m( 4 ) = 392 63 m( 4 ) / n  = 0.86
5 m( 5 ) = 386 69 m( 5 ) / n  = 0.85
6 m( 6 ) = 378 77 m( 6 ) / n  = 0.83
7 m( 7 ) = 371 84 m( 7 ) / n  = 0.82
8 m( 8 ) = 366 89 m( 8 ) / n  = 0.80
9 m( 9 ) = 360 95 m( 9 ) / n  = 0.79

10 m( 10 ) = 353 102 m( 10 ) / n  = 0.78
. . . .
. . . .
. . . .

21 m( 21 ) = 305 150 m( 21 ) / n  = 0.67
22 m( 22 ) = 296 159 m( 22 ) / n  = 0.65
23 m( 23 ) = 295 160 m( 23 ) / n  = 0.65
24 m( 24 ) = 292 163 m( 24 ) / n  = 0.64
25 m( 25 ) = 290 165 m( 25 ) / n  = 0.64
26 m( 26 ) = 288 167 m( 26 ) / n  = 0.63
27 m( 27 ) = 286 169 m( 27 ) / n  = 0.63
28 m( 28 ) = 283 172 m( 28 ) / n  = 0.62
29 m( 29 ) = 280 175 m( 29 ) / n  = 0.62
30 m( 30 ) = 279 176 m( 30 ) / n  = 0.61
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2. Right Censored Data

In clinical studies, patients are typically recruited over a recruitment 
interval and then followed for an additional period of time.

Recruitment
Interval

0

 

Additional
Follow-up










Let

ti = the time from entry to exit for the ith patient

and

fi =
1:  patient dies at exit  
0:   patient alive at exit  

i
i

th

th

RST

With censored data, the proportion of patients who are known to have 
died by time t underestimates the true cumulative mortality since some 
patients will die after their censoring times.

Patients who are alive at exit are said to be right censored.  This 
means that we know that they survived until at least time ti but do not 
know how much longer they lived thereafter.
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3. Kaplan-Meier (Product Limit) Survival Curves

Suppose that we have censored survival data on a cohort of patients.  
We divide the follow-up time into intervals that are small enough 
that few patients die in any one interval. 

Suppose this interval is days.

Let

ni be the number of patients known to be at risk at the 
beginning of day i.  

di be the number of patients who die on day i

1 2 3
ˆ[ ] ... tS t p p p p

The probability that a patient survives the first t days is the joint probability 
of surviving days 1, 2, …,t which is estimated by  

p
n d

ni
i i

i




Then for patients alive at the beginning of the ith day, the estimated 
probability of surviving the day is
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ˆˆ[ ] 1 [ ]D t S t 

The Kaplan-Meier cumulative mortality curve is

Note that pi = 1 on all days that no deaths are observed.  Hence, if tk
denotes the kth day on which deaths are observed then 

{7.1}
{ : }

ˆ[ ]
k

k
k t t

S t p


 

This estimate is the Kaplan-Meier survival curve.

a)     Example:  Survival in lymphoma patients

Armitage et al. (2002: p. 579) discuss the following data on patient survival 
after recruitment into a clinical of patients with diffuse histiocytic lymphoma 
(KcKelvey et al. Cancer 1976; 38: 1484 – 93).

Follow-up (days)

Dead at end of follow-up

Stage 3
6 19 32 42

42 94 207 253

Stage 4
4 6 10 11

11 11 13 17
20 20 21 22
24 24 29 30
30 31 33 34
35 39 40 45
46 50 56 63
68 82 85 88
89 90 93 104

110 134 137 169
171 173 175 184
201 222

Alive at end of follow-up   

43 126 169 211
227 255 270 310
316 335 346

41 43 61 61
160 235 247 260
284 290 291 302
304 341 345
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4. Drawing Kaplan-Meier Survival Curves in Stata

*  Lymphoma.log
. *
. *  Plot Kaplan-Meier Survival curves of lymphoma 
. *  patients by stage of tumor.  Perform log-rank test. 
. *
. *  See Armitage et al.  2002, Table 17.3.
. *      McKelvey et al., 1976.
. *
. use  "f:/mph/data/armitage/lymphoma.dta", clear

. * Data > Describe data > List data

. list  in 1/7
+-----------------------------+
| id     stage   time    fate |                                       {1}
|-----------------------------|

1. |  1   Stage 3      6    Dead |
2. |  2   Stage 3     19    Dead |
3. |  3   Stage 3     32    Dead |
4. |  4   Stage 3     42    Dead |
5. |  5   Stage 3     42    Dead |

|-----------------------------|
6. |  6   Stage 3     43   Alive |
7. |  7   Stage 3     94    Dead |

+-----------------------------+

{1} Two variables must be defined to 
give each patient’s length of 
follow-up and fate at exit.  In 
this example, these variables are 
called time and fate respectively.

. * Data > Describe data > Describe data contents (codebook) 

. codebook fate
fate ---------------------------------------- (unlabeled)

type:  numeric (float)
label:  fate

range:  [0,1]            units:  1
unique values:  2         coded missing:  0 / 80

tabulation:  Freq.   Numeric  Label
26         0  Alive {2}
54         1  Dead

. * Statistics > Survival... > Setup... > Declare data to be survival...

. stset time, failure (fate) {3}

failure event:  fate != 0 & fate < .
obs. time interval:  (0, time]
exit on or before:  failure

------------------------------------------------------------------------
80  total obs.
0  exclusions

------------------------------------------------------------------------
80  obs. remaining, representing
54  failures in single record/single failure data

9718  total analysis time at risk, at risk from t =         0
earliest observed entry t =         0

last observed exit t =       346
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{2} The fate variable is coded as 0 = alive and 1 = dead at exit

{3} stset specifies that the data set contains survival data, with each
patient’s exit time denoted by time and status at exit denoted by
fate. Stata interprets fate = 0 to mean that the patient is
censored at exit and fate  0 to mean that she suffered the event
of interest at exit.
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. * Graphics > Survival analysis graphs > Kaplan-Meier survivor function

. sts graph, by(stage) ytitle(Probability of Survival) {4}

failure time:  time
failure/censor:  fate

{4} sts graph plots Kaplan-Meier survival curves.  
by(stage) specifies that separate plots will 
be generated for each value of stage.  The y-
axis title is Probability of Survival.  
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Kaplan-Meier survival estimates, by stage
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• In the preceding graph,   (t) is constant over days when no
deaths are observed and drops abruptly on days when deaths 
occur.

S

• If the time interval is short enough that there is rarely more 
than one death per interval, then the height of the drop at 
each death day indicates the size of the cohort remaining on 
that day.

• The accuracy of the survival curve gets less as we move 
towards the right, as it is based on fewer and fewer patients.

n = 19

n = 61

We can also plot the cumulative mortality curve using the failure
option as follows

. * Graphics > Survival analysis graphs > Kaplan-Meier failure function

. sts graph, by(stage) ytitle(Cumulative Mortality) failure
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Cumulative morbidity plots are often better than survival plots when the 
overall survival is high.
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• If there is no censoring and there a q death days before time t
then 

=

( ) ....S t
n d

n
n d
n d

n d
n d

q q

q q
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Hence the Kaplan-Meier survival curve reduces to the proportion of 
patients alive at time t if there is no censoring.

Kaplan-Meier survival estimates, by stage
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a)      Life Tables

A life table is a table that gives estimates of S(t) for different values 
of t.  The term is slightly old fashioned but is still used.

A 95% confidence interval for S(t) could be estimated by

+

However, this interval does not optimal when        is near 0 or 1 
since this statistic will have a skewed distribution near these 
extreme values (the true survival curve is never less than 0 or 
greater than 1).

( )S t 196.  ( )
s

S t

( )S t

( )S t

s S t
d

n n dS t
k

k k kk t tk

 ( )
{ : }

( )
( )

2 2




5. 95% Confidence Intervals for Survival Functions

The variance of          is estimated by Greenwood's formula

{7.2}
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The variance of                           has variance

{7.3} 

log log ( ) S t

 ( )
( )

log
( )

{ : }

{ : }

2
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d
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







Exponentiating twice gives a 95% confidence interval for         of
{7.4}

which behaves better for extreme values of         .  We can either list or plot 
these values with Stata.  Lymphoma.log continues as follows: 

( )S t
( )exp( .  ( ))S t t1 96

( )S t

 ( ) tlog log ( ) S tand a 95% confidence interval                            + 1.96      .  

. *

. *  List survival statistics

. *

. * Statistics > Survival... > Summary statistics... > List survivor...

. sts list, by(stage) {1}
failure time:  time

failure/censor:  fate
Beg.          Net         Survivor      Std.

Time    Total   Fail   Lost        Function     Error     [95% Conf. Int.]
-------------------------------------------------------------------------------
stage=3 

6       19      1      0          0.9474    0.0512     0.6812    0.9924
19       18      1      0          0.8947    0.0704     0.6408    0.9726
32       17      1      0          0.8421    0.0837     0.5865    0.9462
42       16      2      0          0.7368    0.1010     0.4789    0.8810
43       14      0      1          0.7368    0.1010     0.4789    0.8810
94       13      1      0          0.6802    0.1080     0.4214    0.8421  {2}

.

.

.
335        2      0      1          0.5247    0.1287     0.2570    0.7363
346        1      0      1          0.5247    0.1287     0.2570    0.7363
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{1} sts list provides the same data that is plotted by sts
graph.

{2} For example, of the original 19 stage three patients there are 13
still alive at the beginning of the 94 days of follow-up.  There were 
5 deaths in this group before day 94 and one death on day 94.  
The survivor Function            = 0.68, with standard error         = 
0.11.  The 95 % confidence interval for            is (0.42, 0.84) 

( )S 94 s
S t ( )( )S 94
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stage=4 
4       61      1      0          0.9836    0.0163     0.8893    0.9977
6       60      1      0          0.9672    0.0228     0.8752    0.9917

.

.

.
341        2      0      1          0.1954    0.0542     0.1026    0.3102
345        1      0      1          0.1954    0.0542     0.1026    0.3102

----------------------------------------------------------------------------

. * Statistics > Survival... > Summary statistics... > List survivor...

. sts list, by(stage) at(40 50 60) failure {3}

failure _d:  fate
analysis time _t:  time

Beg.                    Failure       Std.
Time    Total    Fail            Function     Error     [95% Conf. Int.]

----------------------------------------------------------------------------
Stage 3 

40       17       3              0.1579    0.0837     0.0538    0.4135
50       14       2              0.2632    0.1010     0.1190    0.5211
60       14       0              0.2632    0.1010     0.1190    0.5211

Stage 4
40       39      23              0.3770    0.0621     0.2690    0.5108
50       34       3              0.4290    0.0637     0.3156    0.5630
60       33       1              0.4463    0.0641     0.3315    0.5800

----------------------------------------------------------------------------
Note:  Failure function is calculated over full data and evaluated at

indicated times; it is not calculated from aggregates shown at left.

{3} The preceding sts list command can generate a very large listing
for large data sets. If we want to know the survival function at
specific values we can obtain them using the at option. If we wish
cumulative morbidity rates rather than survival rates we can use
the failure option. These options are illustrated with this
command.
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. *

. *  Kaplan-Meier survival curves by stage with 95% CIs

. *

. * Graphics > Survival analysis graphs > Kaplan-Meier survivor function

. sts graph, by(stage)   ci censored(single) separate     /// {4}
>     xlabel(0 (50) 350) xmtick(0 (25) 350)               ///
>     byopts(title(, size(0)) legend(off)) /// {5}
>     ytitle(Probability of Survival) ///
>     ylabel(0 (.1) 1, angle(0)) ciopts(color(yellow)) /// {6}
>     xtitle(Days Since Recruitment) ymtick(0 (.05) 1)

{4} Stata also permits users to graph confidence bounds for and to
indicate when subjects lost to follow-up with tick marks. This is
done with the ci and censored(single) options, respectively. The
separate option causes the survival curves to be drawn in separate
panels.

( )S t

{5} The byopts option controls attributes related to having multiple
curves on the same graph; title(" ", size(0)) suppresses the graph’s
default title; legend(off) suppresses the legend. When the
separate option is given title and legend must be suboptions of
byopts rather than separate options.

{6} The ciopts option allows control of the confidence bands. Here we
choose yellow bands.
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{4} Stata also permits users to graph confidence bounds for and to
indicate when subjects lost to follow-up with tick marks. This is
done with the ci and censored(single) options, respectively. The
separate option causes the survival curves to be drawn in separate
panels.

( )S t

{5} The byopts option controls attributes related to having multiple
curves on the same graph; title(" ", size(0)) suppresses the graph’s
default title; legend(off) suppresses the legend. When the
separate option is given title and legend must be suboptions of
byopts rather than separate options.

{6} The ciopts option allows control of the confidence bands. Here we
choose yellow bands.
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Some journals require a table showing the number of subjects at risk at 
different survival times given below the survival curve.   In Stata this can be 
done as follows.

{7} The risktable option creates a risk table below the graph with one
row for each curve that is drawn. The order suboption orders and
labels these rows. Its syntax is identical to that of the order
suboption of the legend option.

. *

. *  Kaplan-Meier morbidity curves by stage with risk table

. *

. * Graphics > Survival analysis graphs > Kaplan-Meier failure function

. sts graph, by(stage)  failure ///
>     risktable(,order(2 "Stage 4" 1 "Stage 3")) /// {7}
>     ytitle(Cumulative Mortality) ///
>     xlabel(0 (50) 350) xmtick(0 (25) 350) ///
>     ylabel(0 (.1) .8, angle(0)) ///
>     xtitle(Days Since Recruitment) ymtick(0 (.05) .8) ///
>     title(" ",size(0)) legend(ring(0) cols(1) ///
>        position(11) order(2 "Stage 4" 1 "Stage 3"))
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1. The patients are representative of the underlying population and

2. Patients who are censored have the same risk of suffering the event of 
interest as are patients who are not.

If censored patients are more likely to die than uncensored patients with 
equal follow-up then our survival estimates will be biased.

6.     Censoring and Bias

Kaplan-Meier survival curves will be unbiased estimates of the true survival 
curve as long as

Survival curves are often derived for some endpoint other than death.  In 
this case, some deaths may be treated as censoring events.

Such bias can occur for many reasons, not the least of which is that dead
patients do not return for follow-up visits.

For example, if the event of interest is developing of breast cancer, then
we may treat death due to heart disease as a censoring event. This is
reasonable as long as there is no relationship between heart disease and
breast cancer. That is, when we censor a woman who died of heart
disease, we are assuming that she would have had the same subsequent
risk of breast cancer as other women if she had lived.

If we were studying lung cancer, then treating death from heart disease as
a censoring event would bias our results since smoking increases the risk of
both lung cancer morbidity and cardiovascular mortality and patients who
die of heart disease are more likely to have smoked and hence would have
been more likely to develop lung cancer if they had not died of heart disease
first.
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0 1 2: [ ] [ ]H S t S t for all t

7.     Log-Rank Test

a)     Mantel-Haenszel test for survivorship data

Suppose that two treatments have survival curves S1[t] and S2[t]

We wish to test the null hypothesis that

d k1

1 2k kkD d d 

1 2k k kN n n 

Suppose that on the kth death day that there are and patients at
risk on treatments 1 and 2 and that and deaths occur in these
groups on this day.

n k1 n k2

d k2

Let

Then the observed death rate on the kth death day is             .                      /k kD N

If the null hypothesis is true then the expected number of deaths in each 
group is

1 1[ ] [ / )k k k kk
E d D n D N and 2 2[ ] [ / )k k k kk

E d D n D N

The greater the difference between d1k and                   , the greater the 
evidence that the null hypothesis is false.

1[ ]k kE d D
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This test was renamed the log-rank test by Peto who studied its
mathematical properties.

Mantel proposed forming the 2x2 contingency tables

on each death day and performing a Mantel-Haenszel 2 test.

If the time interval is short enough that dk < 1 for each interval, then the
test of H0 depends only on the order in which the deaths occur and not on
their time of occurrence.

It is in this sense that the test is a rank test.

b)     Example:  Tumor stage in lymphoma patients

Lymphoma.log  continues as follows:

kth death day Treatment 1 Treatment 2 Total 

Died d k1  d k2  
kD  

Survived n dk k1 1  n dk k2 2  k kN D  

Total n k1  n k2  kN  

 

k kN D

. * Statistics > Survival... > Summary... > Test equality of survivor...

. sts test stage
{1}

failure _d:  fate
analysis time _t:  time

Log-rank test for equality of survivor functions

|  Events          Events
stage |  observed       expected
------+-------------------------
3     |         8          16.69
4     |        46          37.31
------+-------------------------
Total |        54          54.00

chi2(1) =       6.71
Pr>chi2 =     0.0096 {2}

{1} Perform a log-rank test for equality of survivor functions in
patient groups defined by different values of stage. In this
example, stage 3 patients are compared to stage 4 patients.

{2} In this example, the log-rank P value = 0.0096, indicating that
the marked difference in survivorship between stage 3 and
stage 4 lymphoma patients is not likely to be due to chance.
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. * Statistics > Summaries... > Tables > Two-way tables with measures...

. tabulate stage fate, exact {3}

Lymphoma   | fate
Stage      |     Alive       Dead |     Total
-----------+----------------------+----------

3 |        11          8 |        19 
4 |        15         46 |        61 

-----------+----------------------+----------
Total |        26         54 |        80 

Fisher's exact =                 0.011
1-sided Fisher's exact =                 0.009 

{3} The tabulate command cross-tabulates patients by stage and fate.
The exact option calculates Fisher’s exact test of the hypothesis
that the proportion of deaths in the two groups are equal. Fisher’s
exact test differs from the log-rank test in that the latter takes
into consideration time to death as well as numbers of deaths
while the former only considers numbers of deaths. In this
example, the two tests give very similar results. However, if the
true survival curves look like this …..
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…the log-rank test may be highly significant even though the observed
death rates in each group are equal. Fisher’s exact test, however, will
not be significant if the death rates are the same.



MPH Program,  Biostatistics II        
W.D. Dupont

February 16, 2011

5: Introduction to survival analysis 5.26

These groups are defined by the number of distinct levels taken by the
variable specified in the sts test command. E.g. in the preceding
example if there were four different lymphoma stages define by stage
then sts test stage would compare the four survival curves for these
groups of patients. The test statistic has an asymptotic 2

distribution with one degree of freedom less than the number of
patient groups being compared.

c)     Log-rank test for multiple patient groups

The log-rank test generalizes to allow the comparison of survival in 
several groups.

Suppose that a patient is alive at time t and that her probability of dying in 
the short time interval (              is 

8.       Hazard Functions

[ ]t t 

Then [t] is said to be the hazard function for the patient at time t. 

For a very large population

[ ]t t   The number of deaths in the interval 
Number of people alive at time 

( , )t t t
t

 

More precisely

 

Patient dies by Patient alive
Pr

time at time 
 

t t t
t

t


 
   



{7.5}
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[t] is the instantaneous rate per unit time at which people are dying at 
time t.

[t] = 0 implies that there is no risk of death at time t and S[t] is flat at 
time t.

Large values of [t] imply a rapid rate of decline in S[t].

The hazard function is related to the survival function through the
equation

0
[ ] exp [ ]

t
S t x dx    

where                  is the area under the curve [x] between 0 and t.
0

[ ]
t

x dx

0 t

0
[ ]

t
x dx =  green area

[t]
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a)     Proportional hazards

Suppose that                          are the hazard functions for control and 
experimental for treatments, respectively. 

0 1[ ] and [ ]t t 

Then these treatments have proportional hazards if

1 0[ ] [ ]t R t 

for some constant R.

The proportional hazards assumption places no restrictions on the shape
of but requires that0( )t

1 0[ ] / [ ]t t R  
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b)     Relative risks and hazard ratios

Suppose that the risks of death by time           for patients on control and 
experimental treatments who are alive at time t are              and, 
respectively.

t t 

0[ ]t t  1[ ]t t 

If                         at all times, then this relative risk is 1 0[ ] [ ]t R t 

01

0 0

[ ][ ]

[ ] [ ]

R tt
R

t t


 

 

Thus the ratio of two hazard functions can be thought of as an
instantaneous relative risk, or as a relative risk if this ratio is constant.

1 1

0 0

[ ] [ ]

[ ] [ ]

t t t

t t t

 
 






Then the risk of experimental subjects at time t relative to control is
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This model is said to be semi-nonparametric in that it makes no
assumptions about the shape of the control hazard function.

If is an estimate of  β then             estimates the relative risk of the 
experimental therapy relative to controls since
 ˆexp[ ]

0[ ]t

1 0[ ] [ ]exp[ ]   t t

9.     Proportional Hazards Regression Analysis

a)      The model

 1 tSuppose that          and          are the hazard functions for the control and 
experimental therapies and  is an unknown parameter.  The proportional 
hazards model assumes that

   01

0 0

exp [ ][ ]
exp

[ ] [ ]

tt
R

t t

 
   
 

b)       Example:  Risk of stage 3 vs. stage 4 lymphoma 

In Stata proportional hazards regression analysis is performed by the stcox
command. The Lymphoma.log file continues as follows.

. *

. *  Preform proportional hazards regression analysis of 

. *  lymphoma patients by stage of tumor. 

. * 

. * Statistics > Survival... > Regression... > Cox proportional hazards model

. stcox stage {1}

failure _d:  fate
analysis time _t:  time

Iteration 0:  Log Likelihood = -207.5548
Iteration 1:  Log Likelihood =-203.86666
Iteration 2:  Log Likelihood =-203.73805
Iteration 3:  Log Likelihood =-203.73761
Refining estimates:
Iteration 0:  Log Likelihood =-203.73761

Cox regression -- Breslow method for ties

No. of subjects =           80                     Number of obs   =        80
No. of failures =           54
Time at risk    =         9718

LR chi2(1)      =      7.63
Log likelihood  =   -203.73761                     Prob > chi2     =    0.0057

------------------------------------------------------------------------------
_t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
stage |   2.614362   1.008191     2.49   0.013     1.227756    5.566976 {2}

------------------------------------------------------------------------------
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{1} This command fits the proportional hazards regression model.

A stset command must precede the stcox command to define the fate and 
follow-up variables.

This model can be written                          and                           for stage 3 
and 4 patients, respectively.  Hence the hazard ratio for stage 4 patients 
relative to stage 3 patients is 

which we interpret as the relative risk of death for stage 4 patients 
compared to stage 3 patients.  Note that we could have redefined stage to 
be an indicator variable that equals 1 for stage 4 patients and 0 for stage 3 
patients.  Had we done that, the hazard for stage 3 and 4

patients would have been           and             respectively.  The hazard

ratio, however, would still be

  ( , ) ( )exp( )t stage t stage 0

  ( , ) ( )t t e3 0
3   ( , ) ( )t t e4 0

4










  ( , )

( , )
( )
( )

t
t

t e
t e

e e
4
3

0
4

0
3

4 3  

0( )t  
0( )t e

e

{2} This hazard ratio or relative risk equals 2.61 and is
significantly different from zero (P=0.013)
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. * Statistics > Survival... > Regression... > Cox proportional hazards model

. stcox stage,nohr {3}

failure _d:  fate
analysis time _t:  time

Iteration 0:  Log Likelihood = -207.5548
Iteration 1:  Log Likelihood =-203.86666
Iteration 2:  Log Likelihood =-203.73805
Iteration 3:  Log Likelihood =-203.73761
Refining estimates:
Iteration 0:  Log Likelihood =-203.73761

Cox regression -- Breslow method for ties

No. of subjects =           80                     Number of obs   =        80
No. of failures =           54
Time at risk    =         9718

LR chi2(1)      =      7.63
Log likelihood  =   -203.73761                     Prob > chi2     =    0.0057

------------------------------------------------------------------------------
_t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
stage |   .9610202   .3856356     2.49   0.013     .2051884    1.716852 {4}

------------------------------------------------------------------------------

{3} It is often useful to obtain direct estimates of the parameters of a
hazard regression model. We do this with the nohr option, which
stands for no hazards ratios.

{4} The estimate of  is 0.961. Note that exp(0.961) = 2.61, the hazard
ratio obtained previously.
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c)     Estimating relative risks together with their 95% 
confidence intervals

The mortal risk of stage 4 lymphoma patients relative to stage 3 patients is
exp(0.9610) = 2.61.

The 95% confidence interval for this risk is 

(2.61exp(-1.96*0.3856), 2.61exp(1.96*0.3856))

= (1.2, 5.6).

Note that Stata gave us this confidence interval when we did not specify 
the nohr option.

------------------------------------------------------------------------------
_t | Haz. Ratio   Std. Err.     z     P>|z|       [95% Conf. Interval]

---------+--------------------------------------------------------------------
stage |   2.614362   1.008191    2.492   0.013       1.227756    5.566976

------------------------------------------------------------------------------

------------------------------------------------------------------------------
_t |      Coef.   Std. Err.     z     P>|z|       [95% Conf. Interval]

---------+--------------------------------------------------------------------
stage |   .9610202   .3856356    2.492   0.013       .2051884    1.716852

------------------------------------------------------------------------------
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If there are extensive ties in the data, the exactm, exactp, or efron options of
the stcox commands may be used to reduce this bias.

exactm and exactp are the most accurate, but can be computationally
intensive.

An alternate approach is to use Poisson regression, which will be discussed
in Chapters 7 and 8.

d)     Tied failure times 

The most straight forward computational approach to the proportional 
hazards model can produce biased parameter estimates if a large 
proportion of the failure times are identical. For this reason it is best to 
record failure times as precisely as possible to avoid ties in this variable. 

10.     What we have covered

Survival data: time to event

Kaplan-Meier survival curves:  the sts graph command
Kaplan-Meier cumulative mortality curves:  the failure option 

Estimating survival probabilities:  the sts list command
Censoring and biased Kaplan-Meier survival curves
Log rank test for comparing survival curves:  the sts test command
Hazard functions and cumulative mortality

Simple proportional hazards regression model:  the stcox command
Tied failure times and biased relative risk estimates

Right censored data

Greenwood confidence bands for survival and mortality curves
the ci option

Displaying censoring times
the censored(single) option

Displaying numbers of patients at risk
the risktable option

Hazard rate ratios and relative risk
Estimating relative risks from proportional hazards models
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