

1. The Model
The simple proportional hazards model generalizes to a multiple regression model in much the same way as for linear and logistic regression.
Suppose we have a cohort of n people. Let

t_i = the time from entry to exit for the ith patient,
f_i = {1: ith patient dies at exit
0: ith patient alive at exit
x_i, x_{i2},..., x_{iq} be the value of q covariates for the ith patient.

Let λ₀[l] be the hazard function for patients with covariates

x_i = x_{i2} = ... = x_{iq} = 0

Then the proportional hazards model assumes that the hazard function for the ith patient is
λ_i[l] = λ₀[l] exp[β₁x_{i1} + β₂x_{i2} + ... + β_qx_{iq}].

MPH Program, Biostatistics II W.D. Dupont

a) Relative risks and hazard ratios

Suppose that patients in risk groups 1 and 2 have covariates $x_{11}, x_{12}, ..., x_{1q}$ and $x_{21}, x_{22}, ..., x_{2q}$, respectively.

Then the relative risk of patients in Group 2 with respect to those in Group 1 in the time interval $(t, t+\Delta t)$ is

 $\begin{aligned} &\frac{\lambda_2[t]\Delta t}{\lambda_1[t]\Delta t} \\ &= \frac{\lambda_0[t]\exp[x_{21}\beta_1 + x_{22}\beta_2 + \dots + x_{2q}\beta_q]}{\lambda_0[t]\exp[x_{11}\beta_1 + x_{12}\beta_2 + \dots + x_{1q}\beta_q]} \\ &= \exp[(x_{21} - x_{11})\beta_1 + (x_{22} - x_{12})\beta_2 + \dots + (x_{2q} - x_{1q})\beta_q] \end{aligned}$

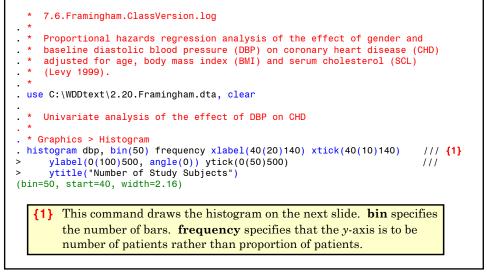
Note that $\lambda_0[t]$ drops out of this equation, and that this instantaneous relative risk remains constant over time.

Thus, if the proportional hazards model is reasonable, we can interpret

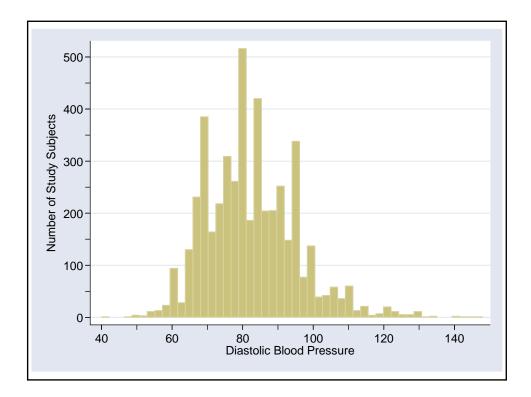
$$(x_{21} - x_{11})\beta_1 + (x_{22} - x_{12})\beta_2 + \cdots (x_{2q} - x_{1q})\beta_1$$

as being the log relative risk associated with being in Group 2 as compared to being in Group 1.

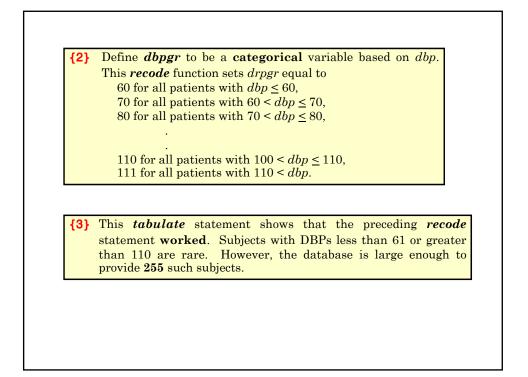
2. Analyzing Multiple Hazard Regression Models


The analysis of hazard regression models is very similar to that for logistic regression. A great strength of Stata is that the commands for analyzing these two models are almost identical. The key difference is in how we interpret the coefficients: in logistic regression

 $\exp\left[\left(x_{21}-x_{11}\right)\beta_{1}+\left(x_{22}-x_{12}\right)\beta_{2}+\cdots\left(x_{2q}-x_{1q}\right)\beta_{q}\right]$

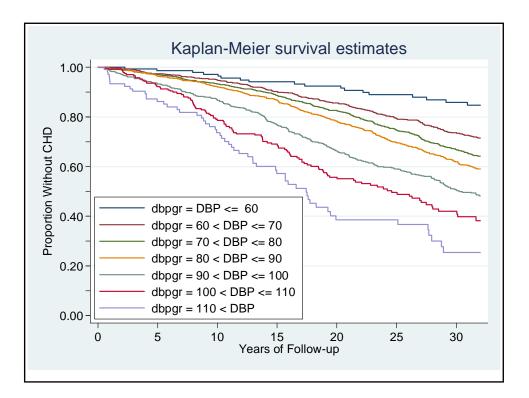

estimates an odds ratio, while in proportional hazards regression this expression estimates a relative risk.

b) Example: Diastolic blood pressure and gender on risk of coronary heart disease

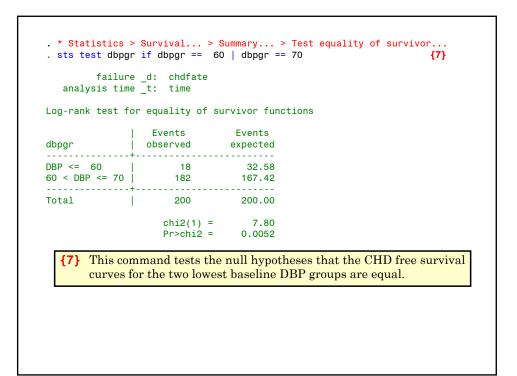

The Framingham data set (Levy 1999) also contains follow-up data on coronary heart disease. Consider the following survival analysis.

Main it/in Weights Density plots Add plots Y Data Variable:	
Variable: O Data are continue dbp Data are discrete	
Bins	Yaxis ◯ Density ◯ Fraction
Lower limit of first bin	Frequency Percent
B ar properties	Add height labels to bars Ber label properties
00	OK Cancel Submit

Disease bpgr Censored CHD Total 60 132 18 150 70 592 182 774 80 1,048 419 1,467 90 863 404 1,267 100 417 284 701 110 125 110 235	abaraco	dbpgr chdfate Coronary			{3}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	dhnar			Total	
70 592 182 774 80 1,048 419 1,467 90 863 404 1,267 100 417 284 701 110 125 110 235		+	+-		
80 1,048 419 1,467 90 863 404 1,267 100 417 284 701 110 125 110 235	60	132	18	150	
90 863 404 1,267 100 417 284 701 110 125 110 235	70	592	182	774	
100 417 284 701 110 125 110 235	80	1,048	419	1,467	
110 125 110 235	90	863	404	1,267	
				235	
	111	49	56	105	
otal 3,226 1,473 4,699	Total	3,226	1,473	4,699	



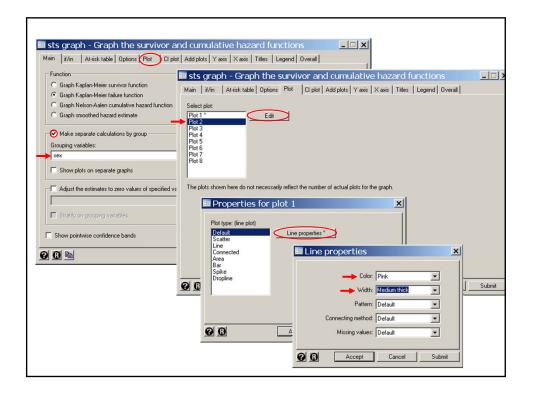

```
* Variables Manager
                 60 "DBP <= 60" 70 "60 < DBP <= 70"
90 "80 < DBP <= 90" 80 "70 < DBP <= 80"
 label define dbp 60 "DBP <= 60"
                                                                   111
                                                                    111
                 100 "90 < DBP <= 100" 110 "100 < DBP <= 110" 111 "110 < DBP"
. label variable dbpgr "DBP level"
. label values dbpgr dbp
. generate time= followup/365.25
                                                                        {4}
. label variable time "Follow-up in Years"
. * Statistics > Survival... > Setup... > Declare data to be survival...
. stset time, failure(chdfate)
     failure event: chdfate != 0 & chdfate < .</pre>
obs. time interval: (0, time]
 exit on or before: failure
4699 total obs.
     0 exclusions
     -----
    4699 obs. remaining, representing
     1473 failures in single record/single failure data
 103710.1 total analysis time at risk, at risk from t =
                                                               0
                           earliest observed entry t =
                                                               0
                                 last observed exit t =
                                                              32
      We define time to be follow-up in years to make graphs more
 {4}
      intelligible.
```


```
. * Graphics > Survival analysis graphs > Kaplan-Meier survivor function
. sts graph, by(dbpgr) ytitle(Proportion Without CHD) ///
> ylabel(0(.2)1, angle(0)) ytick(.0(.1)1) xlabel(0(5)30) ///
> xtitle("Years of Follow-up") legend(ring(0) position(7) col(1)) {5}
failure_d: chdfate
analysis time_t: time
{5} These legend sub-options have the following effects. ring(0)
specifies that the legend is to be inside the graph axes. position
```

specifies that the legend is to be inside the graph axes. **position** specifies the clock position of the legend: 12 is top center, 3 is left center, 6 is bottom center, 7 is bottom left, etc. **col(1)** specifies that the legend is to be given in a single column.

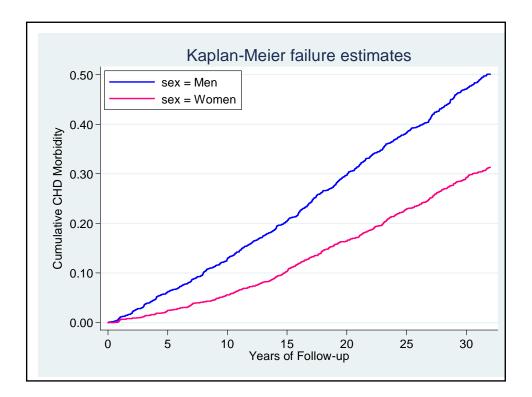
sts graph - Graph the survivor and	d cumulative hazard f	functions			
Main if/in At-risk table Options Plot CI plot	and the second				
		he survivor and cumulative	hazard functio	ons	_ 🗆 X
Graph Kaplan-Meier survivor function Graph Kaplan-Meier failure function Graph Nelson-Aalen cumulative hazard function Graph smoothed hazard estimate	Main it/in At-risk table Op Legend behavior © Default © Show legend © Hide legend	otions Plot Cliplot Addiplots Yaxis >	(axis Titles Legend	j Overall	
Make separate calculations by group Grouping variables: dbpgr	Override default keys				
Show plots on separate graphs	Specify order of keys and option	nally change labels:			2
Adjust the estimates to zero values of specified vari	Organization / Appearance*	Placement *			
Legend organization and appeara Organization Labels Region Titles	ance properties 🛛 🕨	Legend placement			×
Organization Rows/Columns: Columns	- 1 - Columns	Position:			
Stack symbols and text: Default	3	Place legend inside plot region			
Key sequence: Default	1	Flace legend in an area spanning the rather than an area spanning the plo		of the graph.	
Symbol alignment: Default	ā				
Row gap:	1				
Column gap:	1				
Generate keys for all symbols: (allow duplicates)	1	00	Accept	Cancel	Submit
]				
C G Accept	Cancel Submit	11			

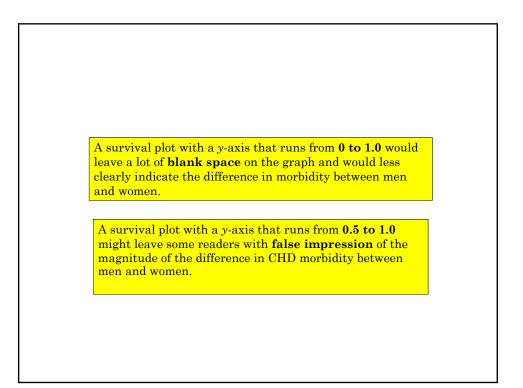

```
* Statistics > Survival... > Summary... > Test equality of survivor...
. sts test dbpgr
                                                                        {6}
  failure _d: chdfate
analysis time _t: time
Log-rank test for equality of survivor functions
                     Events
                                     Events
dbpgr
                     observed
                                    expected
DBP <= 60
                           18
                                       53.63
60 < DBP <= 70
                                      275.72
                          182
70 < DBP <= 80
                          419
                                      489.41
80 < DBP <= 90
                          404
                                      395.62
90 < DBP <= 100
                          284
                                       187.97
100 < DBP <= 110
                                       52.73
                          110
110 < DBP
                           56
                                        17.94
Total
                         1473
                                      1473.00
                        chi2(6) =
                                      259.71
                                      0.0000
                        Pr>chi2 =
    This command tests the null hypotheses that the CHD free survival
6}
    curves for all 7 baseline DBP groups are equal
```



Variables:	Survival settings
dbpgr	×
Perform test: Cox € Logrank Стапое-Ware СРево-Рі СР	1)]^q):
Test trend of the survivor function across Test type	
C Unstratified Stratified on variables: C Display overall test results	C Display individ c Display ind
	OK Use a range of observations From T + to 4633 +

. sts test dbpgr if dbpgr == 70 | dbpgr == 80 **{8}** . sts test dbpgr if dbpgr == 80 | dbpgr == 90 Pr>chi2 = 0.0090 . sts test dbpgr if dbpgr == 90 | dbpgr == 100 Pr>chi2 = 0.0000 . sts test dbpgr if dbpgr == 100 | dbpgr == 110 Pr>chi2 = 0.0053 . sts test dbpgr if dbpgr == 110 | dbpgr == 111 Pr>chi2 = 0.0215 [8] All pair-wise logrank tests of adjacent DBP group levels are not statistically significant (output deleted).

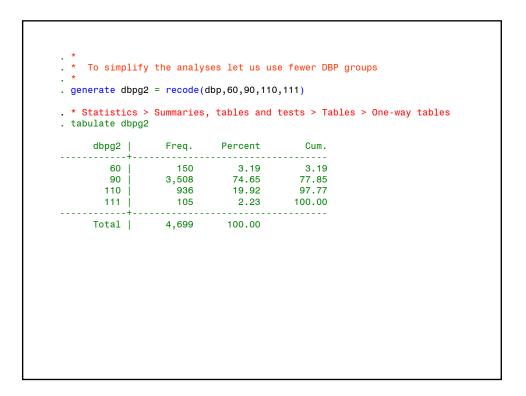



Function	💷 sts graph - Grap	h the survivor a	and cumulative hazard fu	Inctions
C Graph Kaplan-Meier survivor function Graph Kaplan-Meier failure function			lot Add plots Y axis X axis Titles	
C Graph Nelson-Aalen cumulative hazard function C Graph smoothed hazard estimate	Select plot: Plot 1 *	Edit		
Make separate calculations by group Grouping variables: sex	Plot 3 Plot 4 Plot 5 Plot 6 Plot 7			
Show plots on separate graphs	Plot 8			
Adjust the estimates to zero values of specified v	The plots shown here do no		mber of actual plots for the graph.	
Show pointwise confidence bands	Plot type: (line plo Default Scatter Line	t)	ies *	
0 1	Connected Area Bar Spike	📰 Lir	ne properties	×
	Dropline		Color: Blue Width: Medium thick	
			Pattern: Default	•
			Connecting method: Default	-

Graph Kaplan-Meier survivor function Graph Kaplan-Meier falue function Graph Kaplan-Meier falue function Graph Kaplan-Meier falue function Graph Netson-Aalen cumulative hazard Graph smoothed hazard estimate Make separate calculations by group Grouping variables: Adjust the Adjust	egend Overall or and cumulative hazard functions C plox Add plots Y axis X axis Titles Legend Overall Properties rtick/label properties is scale properties
Cancel S	Use value labels Atternate spacing of adjacent labels Atternate spacent submit

sts graph - Graph the surviv	or and cumulative hazard Cl plot Add plots Y axis X axis Titles			
Function Graph Kaplan-Meier survivor function Graph Kaplan-Meier failure function Graph Nelson-Aalen cumulative hazard fu Graph smoothed hazard estimate Make separate calculations by group Grouping variables: sex Show plots on separate graphs Adjust the estimates to zero values of spe	Legend behavior C Default S Show legend Hide legend Dvenide default keys Specify order of keys and optionally chart	Plot Cl plot Add plots Y axis X axis		
Crashin one revenue of userial date Crganization Crganization Corganization Corganization Conganization Columns: Columns: Colu	pearance properties		on nning the entire width (or height) of the	

MPH Program, Biostatistics II W.D. Dupont

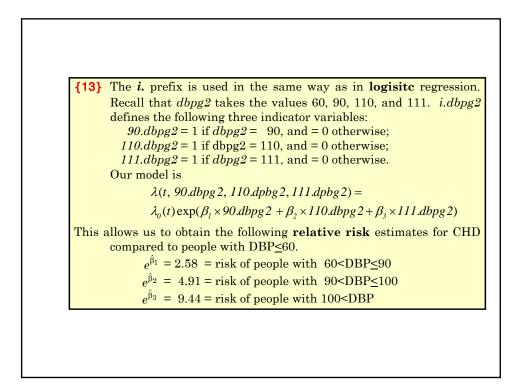

	ysis time _t: k test for equa		on functions		
-	Events	Events	OF TUICCIONS		
ex	observed	expected			
en Iomen	823 650	589.47 883.53			
+	1473				
	chi2(1) = Pr>chi2 =				
	cumulative mo of statistical sig		for men and	l women diff	er with a high

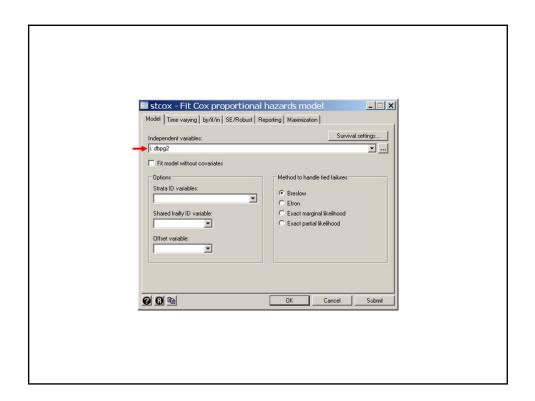
	ex			
(type: label:	numeric (sex	float)	
uni	range: que values:	[1,2] 2 c	units: 1 oded missing: 0 / 4699	
	tabulation:	2049	umeric Label 1 Men	
		2050	2 Women	
generate m	ale = sex <mark>==</mark> 1		2 women	{
	cs > Summari	l	2 women bles > Two-way tables with measures.	••
* Statisti tabulate ma	<mark>cs > Summari</mark> ale sex Sex	les > Ta	bles > Two-way tables with measures.	
* Statisti	<mark>cs > Summari</mark> ale sex	les > Ta	bles > Two-way tables with measures.	
* <mark>Statisti</mark> tabulate m male 0	<mark>cs > Summari</mark> ale sex Sex Men 0	Les > Ta Women 2650	bles > Two-way tables with measures. Total + 2650	
* <mark>Statisti</mark> tabulate m male +	<mark>cs > Summari</mark> ale sex Sex Men	Les > Ta Women 2650	bles > Two-way tables with measures. Total	

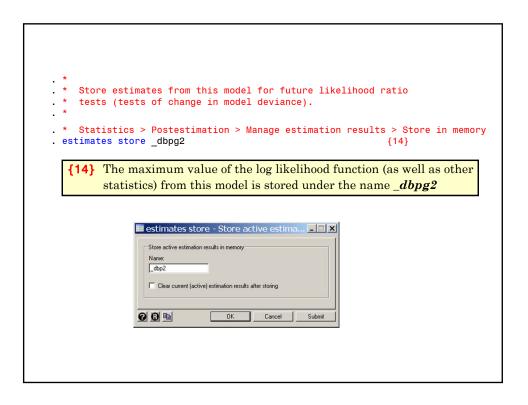
[11] In the database men and women are coded 1 and 2, respectively. I have decided to treat male sex as a positive risk factor in our analyses. To do this we need to give men a higher code than women. (Otherwise, female sex would be a protective risk factor.) The logical value sex==1 is true (equals 1) when the subject is a man (sex=1), and is false (equals 0) when she is a woman (sex=2). Hence the effect of this statement is to define the variable male as equaling 0 or 1 for women and men, respectively. The following tabulate command shows that male has been defined correctly.

```
. * Statistics > Survival... > Regression... > Cox proportional hazards model
. stcox male
                                                         {12}
failure _d: chdfate
  analysis time _t: time
Iteration 0: log likelihood = -11834.856
Iteration 1: log likelihood = -11759.624
Iteration 2: log likelihood = -11759.553
Refining estimates:
Iteration 0: log likelihood = -11759.553
Cox regression -- Breslow method for ties
                                        Number of obs =
No. of subjects =
                    4699
                                                          4699
No. of failures =
                    1473
Time at risk = 103710.0917
                                       LR chi2(1)
                                                    =
                                                         150.61
                                                  =
Log likelihood = -11759.553
                                       Prob > chi2
                                                         0.0000
_____
   _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
    male | 1.900412 .0998308 12.22 0.000 1.714482 2.106504
```

[12] This statement fits the simple hazard regression model $\lambda(t,male) = \lambda_0(t) \exp(\beta \times male)$ The estimate of the risk of CHD for **men** relative to **women** is $e^{\hat{\beta}} = 1.90$ If we had fitted the model $\lambda(t,sex) = \lambda_0(t) \exp(\beta \times sex)$ we would have got that the estimated risk of CHD for **women** relative to **men** is $e^{\hat{\beta}} = 1/1.9004 = 0.526.$




MPH Program, Biostatistics II W.D. Dupont

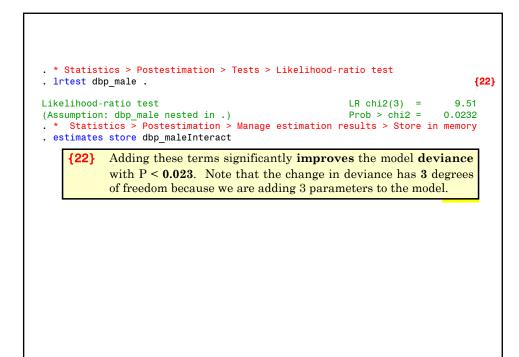

. * Statistics > Survival... > Regression... > Cox proportional hazards model . stcox i.dbpg2 {13} i.dbpg2 Idbpg2 60-111 (naturally coded; _Idbpg2_60 omitted) failure _d: chdfate analysis time _t: time Cox regression -- Breslow method for ties No. of subjects = 4699 Number of obs 4699 No. of failures = 1473 Time at risk = 103710.0917 LR chi2(3) = 188.25 Log likelihood = -11740.729 Prob > chi2 = 0.0000 -----_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval] dbpg2 |
 90
 2.585841
 .6149551
 3.99
 0.000

 110
 4.912658
 1.184529
 6.60
 0.000

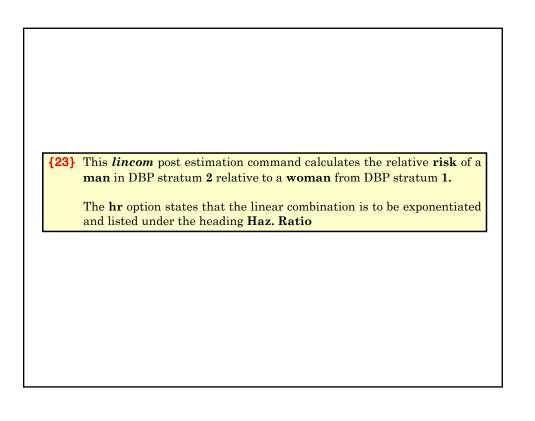
 111
 9.435655
 2.559389
 8.27
 0.000
 1.6224544.1212733.0625057.8805455.54480816.05675

-> sex=	Men Coronary Hea	rt Disease	2	Women Coronary Hea	urt Disease	
dbpg2	Censored	CHD		Censored	CHD	Total
DBP<= 60	40	9	<mark>49</mark>	92	9	101
	81.63	1 <mark>8.37</mark>	100.00	91.09	<mark>8.91</mark>	100.00
60 <dbp90< td=""><td> 933</td><td>568</td><td>1501</td><td> 1570</td><td>437 </td><td>2007</td></dbp90<>	933	568	1501	1570	437	2007
	62.16	37.84	100.00	78.23	21.77	100.00
90DBP110	232	227	459	310	167	477
	50.54	49.46	100.00	64.99	35.01	100.00
110< DBP	21 52.50	19 4 <mark>7.50</mark>		28 43.08	37 <mark>56.92</mark>	65 100.00
Total	1226	823	2049	2000	650	2650
	59.83	40.17	100.00	75.47	24.53	100.00

Itabulate2 - Two-way tables Main With Weights Advanced Row variable: Column variable: dbpg2 Chdiate Itabulates Column variable: dbpg2 Chdiate Itabulates Column variable: Itabulates Within column reistly Itabulates Within column reistly Itabulates Within row relative Itabulates Suppress frequent Itabulates Suppress frequent Itabulates Suppress requert Itreat missing values like other values Suppress cel conter Itabulates Suppress enumeration Itabulates Suppress enumeration Itabulates Do not wap wide tables Itabulates Itabulates Itabulates Dotter Itabulates Itabulates Itabulates Itabulates Itabulates Itabulates	uared lative frequencies re frequencies hisquared ieis Incies main by//t/n Weights Advanced Wain by//t/n Weights Advanced Variables that define groups Variables that define groups: sex
	It (expression) Use a range of observations From 1 to 4638

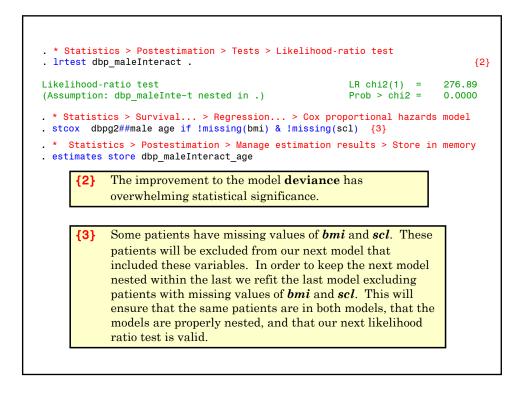

	ne _d: chdfa .me _t: time	ate				
). of failure	s = 2 s =	1473		Numbe	er of obs	= 4699
	1007101			LR cl	ni2(4)	= 325.65
og likelihood	= -11672	.032		Prob	> chi2	= 0.0000
_t	Haz. Ratio	Std. Err.				. Interval]
dbpg2						
90	2.42989	.5780261	3.73	0.000	1.524409	3.873217
110	4.44512	1.072489	6.18	0.000	2.7702	7.13273
111	9.156554	2.483587	8.16	0.000	5.380908	15.58147
male	1.848482	.0972937	11.67	0.000	1.667297	2.049358
display 2*(1	1740.729 -	11672.032)				{

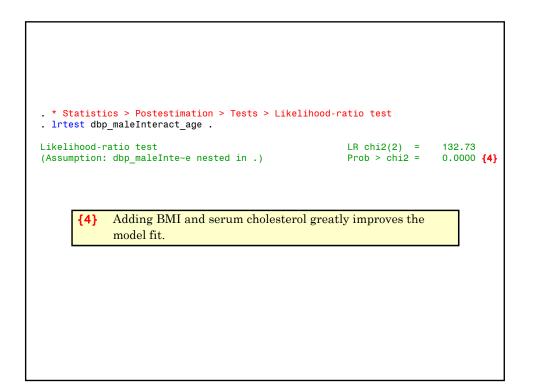
_og likelih	ood = -11740	.729		Prob	> chi2 =	0.0000
	t Haz. Ratio	Std. Err.	Z	P> z	[95% Conf.	Interval]
_Idbpg2_9 _Idbpg2_11 _Idbpg2_11	0 4.912658	1.184529			3.062505	7.880545
{17}	We next fit a model of gend DBP groups. model without interaction ter	er and our f That is we fi gender-DBI	our it a			
{18}	The <i>display</i> of quick calculat model with or difference in	tions. The product of the product of the product of the diaster of	revious i olic bloo	nodel is i d pressur	nested withi re terms. The	n the e
{19}	$chi2tail(df,\chi^2)$ with df degree			for a cl	ni-squared st	atistic χ^2
	For example, t one degree of f normal distrib	reedom is th	ie same	as the sq	uare of a star	


. * Statistics > Postestimation > Tests . lrtest _dbpg2 . Likelihood-ratio test (Assumption: dbpg2 nested in .)	<pre>> Likelihood-ratio test {20} LR chi2(1) = 137.40 Prob > chi2 = 0.0000</pre>
Itest - Likelihood-ratio test after estimation First set of models: [leave empty for most recent model] dbpg2 dbp3 dbp4 dbp3 dbp4 dbp4 dbp4 dbp4 dbp4 dbp4 dbp4 dbp4	{20} The <i>lrtest</i> command performs the same change in model deviance calculation that we just did by handdbpg2 is the name that we assigned to the parameter estimates in the model with just the <i>i.dbpg2</i> covariates. The period refers to the most recent regression command. This command performs the likelihood ratio test associated with the change in model deviance between these two models. It is the responsibility of the user to ensure that these models are nested.
. * Statistics > Postestimation > Manag . estimates store dbp_male	ge estimation results > Store in memory

of subject of failure	s =	1473		Numbe	er of obs	= 4699
	= 103710.0 = -11667				hi2(7) > chi2	= 335.16 = 0.0000
_t	Haz. Ratio	Std. Err.	Z	P> z	[95% Conf	. Interval]
dbpg2						
90	2.608528	.8784348	2.85	0.004	1.348184	5.047099
110	5.410225	1.851724	4.93	0.000	2.766177	10.58159
111	13.58269	5.051908	7.01	0.000	6.552275	28.15654
1.male	2.371498	1.117948	1.83	0.067	.9413644	5.974309
 bpg2#male						
90 1	.8469065	.402857	-0.35	0.727	.3333768	2.151471
110 1	.6818294	.3288495	-0.79	0.427	.2649338	1.754746
111 1	.4017463	.2207453	-1.66	0.097	.1368507	1.179388
{21}	Ve next add	three intera	action te	rms,		
	-	1.male = 90 1.male = 11	-			

	stcox - Fit Cox proportional I Model Time vaying by///n SE/Robust Re	porting Maximization	
	Independent variables:	Survival settings	
	Fit model without covariates Options Strata ID variables: Shared fraitly ID variable. Offset variable: V	Method to handle tied failures C Breslow C Efron C Exact marginal Belhood C Exact partial Belhood	
Ĩ	20	OK Cancel Submit	
-			


```
. lincom 90.dbpg2 + 1.male + 90.dbpg2#1.male, hr
                                           {23}
(1) 110.dbpg2 + 1.male + 110.dbpg2#1.male = 0
     _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
    (1) 5.239064 1.760301 4.93 0.000 2.711777
                                        10.1217
           ----
. lincom 110.dbpg2 + 1.male + 110.dbpg2#1.male, hr
 (1) 110.dbpg2 + 1.male + 110.dbpg2#1.male = 0
   _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
                             ----
    (1) | 8.748101 2.974112 6.38 0.000 4.492922
                                        17.0333
. lincom 111.dbpg2 + 1.male + 111.dbpg2#1.male, hr
( 1) 111.dbpg2 + 1.male + 111.dbpg2#1.male= 0
_____
    _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
        ·----·
    (1) | 12.94078 5.238924 6.32 0.000 5.852767
                                       28,61274
```



		Gender					
Diastolic Blood	Wome	en	Mer	ı			
Pressure	Relative Risk	95% CI	Relative Risk	95% CI			
<u><</u> 60 mm hg	1.0*		2.37	(0.94 - 6.0)			
61 - 90 mm hg	2.61	(1.3 - 5.0)	5.24	(2.7 - 10)			
91 - 110 mm hg	5.41	(2.8 - 11)	8.75	(4.5 - 17)			
> 110 mm hg	13.6	(6.6 - 28)	12.9	(5.9 - 29)			
Denominator of r	elative risk	, /		, ,			

7.6. Framingham. Class Version.log continues as follows:

4699	er of obs =	Numbe		473		o. of subject o. of failure ime at risk
l. 612.05 0.0000	to the model	t add <i>age</i>	We first	.829 {1}	l = -11528.	.og likelihood
Interval]	[95% Conf.	P> z	z	Std. Err.	Haz. Ratio	_t
						dbpg2
4.121937	1.100055	0.025	2.24	.7175801	2.129403	90
6.448672	1.677811	0.001	3.47	1.12979	3.289324	110
16.70554	3.870656	0.000	5.59	2.999755	8.04123	111
5.339081	.841065	0.111	1.59	.9990903	2.119083	1.male
						dbpg2#male
2.478068	.3838559	0.958	-0.05	.464017	.9753056	90 1
2.53701	.382278	0.975	-0.03	.4754774	.984806	110 1
1.483258	.172002	0.214	-1.24	.2776141	.5050973	111 1
1.063531	1.049886	0.000	16.74	.0034809	1.056687	age

likelihoo	d = -11390	.412			· · ·	= 736.95 = 0.0000
t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf	. Interval]
dbpg2	+ 					
90	1.708285	.5771462	1.58	0.113	.8810103	3.312377
110	2,198904		2.28		1.115522	
111	5.166759	1.94896	4.35	0.000	2.466808	10.82184
1.male	1.97694	.932211	1.45	0.148	.7845418	4.981626
bpg2#male						
90 1	1.052562	.5009358	0.11	0.914	.4141362	2.675173
110 1	1.16722	.5641426	0.32	0.749	.4526355	3.009933
111 1	.6184658	.3403661	-0.87	0.383	.2103129	1.818718
age	1.049249	.0035341	14.27	0.000	1.042345	1.056198
bmi	1.040017	.0069042	5.91	0.000	1.026572	1.053637
scl	1.00584	.0005845	10.02	0.000	1.004695	1.006986

Table 6.2. Effect		nd Baseline DB all 2-Way Intera		y Heart Disease
Diastolic Blood Pressure		Ge	ender	
	Wo	Women		en
	Relative Ris	sk† 95% Cl	Relative Ri	sk 95% Cl
60 mm hg	1.0*		1.98	(0.78 - 5.0)
61 - 90 mm hg	1.71	(0.88 - 3.3)	3.55	(1.8 - 6.9)
91 - 110 mm hg	2.19	(1.1 - 4.3)	5.07	(2.6 - 10)
> 110 mm hg	5.17	(2.5 - 11)	6.32	(2.8 - 14)

```
. lincom 90.dbpg2 + 1.male + 90.dbpg2#1.male, hr
 ( 1) 90.dbpg2 + 1.male + 90.dbpg2#1.male = 0
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
    (1) | 3.554688 1.197825 3.76 0.000 1.836419 6.88068
. lincom 110.dbpg2 + 1.male + 110.dbpg2#1.male, hr
( 1) 110.dbpg2 + 1.male + 110.dbpg2#1.male = 0
          _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
    (1) | 5.074023 1.735763 4.75 0.000 2.595174 9.920611
                                              _ _ _ _ _ _ _ _ _
. lincom 111.dbpg2 + 1.male + 111.dbpg2#1.male, hr
( 1) 111.dbpg2 + 1.male + 111.dbpg2#1.male = 0
  -----
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
    (1) | 6.31724 2.572047 4.53 0.000 2.844219 14.0311
_ _ _ _ _ _ _ _ _ _ .
```

Comparing these tables shows that the adjusted risks of DBP and sex on CHD are far less than the crude risks. Our analyses show that age, BMI and serum cholesterol are CHD risk factors in their own right which are positively correlated with DBP and sex and hence inflate the apparent effects of these risk factors on CHD.

		G	ender	
Diastolic Blood	Wome	en	Mer	1
Pressure	Relative Risk	95% CI	Relative Risk	95% CI
Unadjusted				
60 mm hg	1.0		2.37	(0.94 - 6.0)
61 - 90 mm hg	2.61	(1.3 - 5.0)	5.24	(2.7 - 10)
91 - 110 mm hg	5.41	(2.8 - 11)	8.75	(4.5 - 17)
> 110 mm hg	13.6	(6.6 - 28)	12.9	(5.9 - 29)
Adjusted for Age E	3MI and Serum Ch	olesterol		
60 mm hg	1.0		1.98	(0.78 - 5.0)
61 - 90 mm hg	1.71	(0.88 - 3.3)	3.55	(1.8 - 6.9)
91 - 110 mm hg	2.19	(1.1 - 4.3)	5.07	(2.6 - 10)
> 110 mm hg	5.17	(2.5 - 11)	6.32	(2.8 - 14)

The preceding example covers the following topics...

c) Interaction terms in hazard regression models

See also Chapter IV, Section 14 on logistic regression analysis.

d) Estimating the joint effects of two risk factors on a relative risk

See also Chapter IV, Sections 13 and 14 on logistic regression.

e) Calculating 95% CIs for relative risks derived from multiple parameter estimates.

See also Chapter IV, Section 10 on logistic regression, respectively.

f) Adjusting for confounding variables

See also Chapter II, Sections 2 and 6 on linear regression.

3. Restricted Cubic Splines and Survival Analysis

Restricted cubic splines can be used in much the same way as for linear or logistic regression. Suppose that x_i is a continuous covariate of interest. Then a k knot model gives covariates

 $x_{i1}, x_{i2}, \dots, x_{i,k-1}$

The relative risk of a patient with covariate x_i compared to covariate x_j is

$$\frac{\lambda_0[t] \exp \left[x_{i1}\beta_1 + x_{i2}\beta_2 + \dots + x_{i,k-1}\beta_{k-1} \right]}{\lambda_0[t] \exp \left[x_{j1}\beta_1 + x_{j2}\beta_2 + \dots + x_{j,k-1}\beta_{k-1} \right]}$$

$$= \exp \left[\left(x_{i1} - x_{j1} \right) \beta_1 + \left(x_{i2} - x_{j2} \right) \beta_2 + \cdots \left(x_{2,k-1} - x_{1k-1} \right) \beta_{k-1} \right]$$

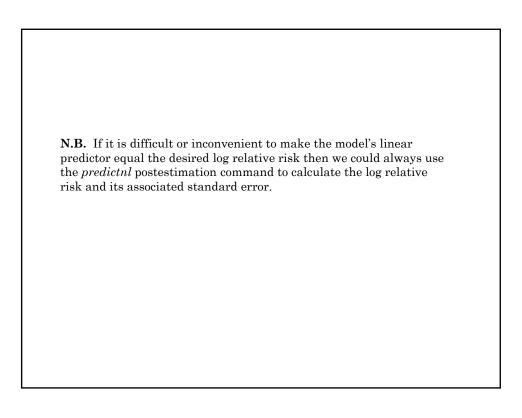
We can directly estimate the log relative risk

$$(x_{i1} - x_{j1})\beta_1 + (x_{i2} - x_{j2})\beta_2 + \dots + (x_{i,k-1} - x_{jk-1})\beta_{k-1}$$

$$(6.1)$$

However, we also wish to calculate confidence intervals for relative risks. Stata does not provide a *predict* post-estimation command to do this directly.

Suppose that the reference value of x_j is less than the first knot. Let this value be c.


Let $y_i = x_i - c$ and $y_{ij} = x_{ij} - c$ be the analogous spline covariates for y_i

Then when $x_j = c$ we have $y_{i1} = y_i = 0$, and $y_{j2} = y_{j3} = \cdots = y_{j,k-1} = 0$ because 0 is smaller than the smallest *y*-knot. Hence,

 $\{6.1\}$ can be rewritten

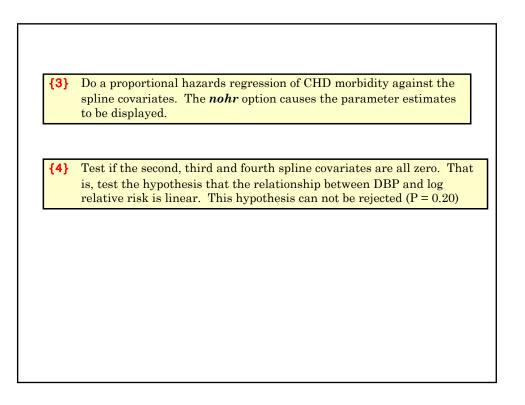
 $y_{i1}\beta_1 + y_{i2}\beta_2 + \dots + y_{i,k-1}\beta_{k-1}$

which is the linear predictor of the model as well as the log relative risk of interest. Regressing survival against y_i allows us to use Stata's post estimation commands to calculate 95% confidence bands for relative risks.

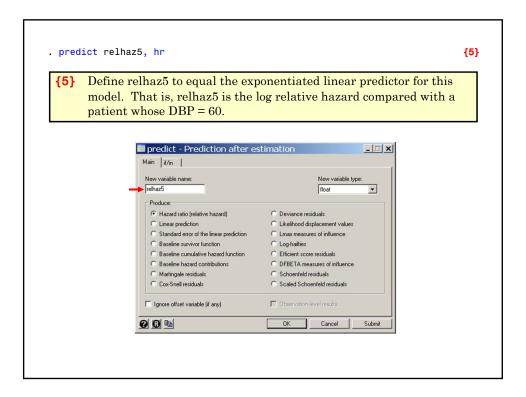
* Framingham *	.Spline.log					
 * Proportion * baseline c * Use restri 	al hazards ro iastolic blo cted cubic s e a DBP of 6	od pressure plines to m	e (DBP) on c wodel the ef	oronary hea fect of DBP	rt disease (on CHD risk	CHD)
use C:\WDDtex	t\2.20.Frami	ngham.dta,	clear			
	C . 1 1	65 OF				
Ŭ	1.1		ars"			
label variabl * Statistics stset time, f	e time "Foll > <mark>Survival</mark>	ow-up in Ye . > <mark>Setup.</mark> .		e data to be	survival {Output omi	
stset time, f sort dbp generate dbp6	e time "Foll > Survival ailure(chdfa 0 = dbp - 60	ow-up in Ye . > <mark>Setup</mark> te)	. > Declare		{Output omi	
label variabl * Statistics stset time, f sort dbp generate dbp6 * Data > Crea	e time "Foll > Survival ailure(chdfa 0 = dbp - 60 te > Othe	ow-up in Ye . > Setup te) r variable-	. > Declare		{Output omi	tted}
label variabl * Statistics stset time, f sort dbp	<pre>e time "Foll > Survival ailure(chdfa 0 = dbp - 60 te > Othe p60 = dbp60,</pre>	ow-up in Ye . > Setup te) r variable- cubic disp	. > Declare creation layknots	> linear a	{Output omi	tted} {1}

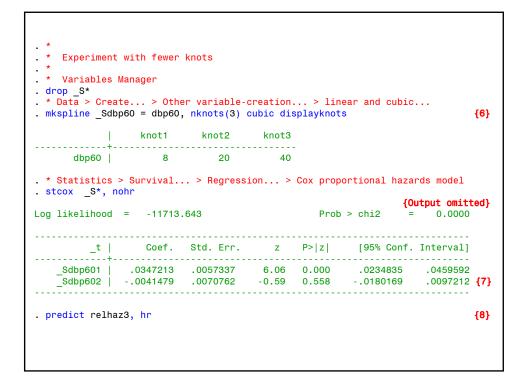
[1] Note that dbp60 = 0 when DBP = 60
[2] Calculate cubic spline covariates for the default 5 knot model. Note that the biggest knot is at DBP = 60+45 = 105 which is well below the extreme observed blood pressures. Note also that the smallest knot is at DBP = 64 > 60. This means that when DBP = 60, all of the spline covariates will equal 0. This command generates spline covariates named _Sdbp601, _Sdbp602, _Sdbp603, and _Sdbp604.

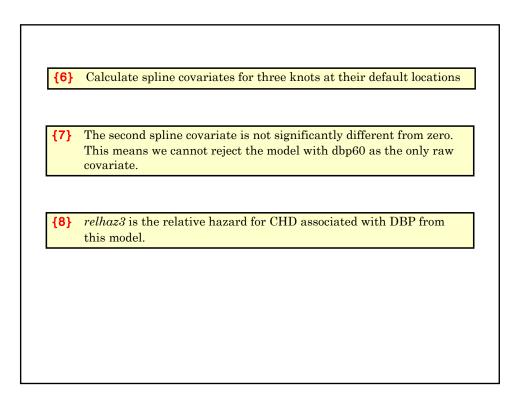
Create spline by specifying		
C New variables and knots for linear sp	line:	
Example: "mild 10 moderate 20 heav Note: the last new variable is not foll		mkspline - Linear and restricted cubic spline constr
C New variable stub and number of var		
New variable stub for restricted cubic Sdbp60	spline:	Construct new variables so that when they are used in estimation Coefficients measure the slopes for the intervals C Coefficients represent the change in slope from the preceding interval
20	ΟΚ	Display the values of the knots used in creating the spline Place knots at percentiles rather than equally spaced over the range
		Knot specification for restricted cubic spline
		5

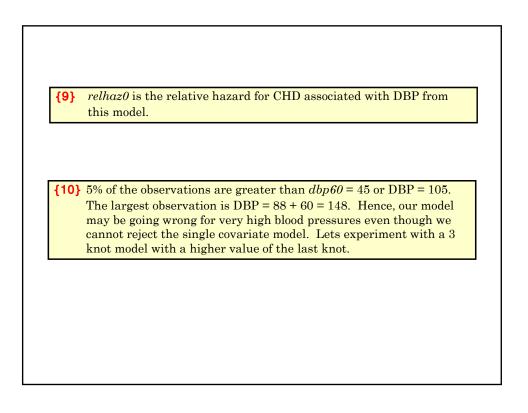

```
. * Statistics > Survival... > Regression... > Cox proportional hazards model
. stcox _S*, nohr
                                                                                 {3}
                                                                   {Output omitted}
                     4699
1473
No. of subjects =
                                                       Number of obs =
                                                                                4699
No. of failures =
Time at risk = 103710.0917
                                                      LR chi2(4)
                                                                        = 246.93
Log likelihood = -11711.393
                                                     Prob > chi2
                                                                      = 0.0000
                                                         _t | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_Sdbp601 | .0618603 .016815 3.68 0.000 .0289035 .094817
                                                          -.4464737 -.0071902
.0461754 1.828925
-1.927938 -.0379362

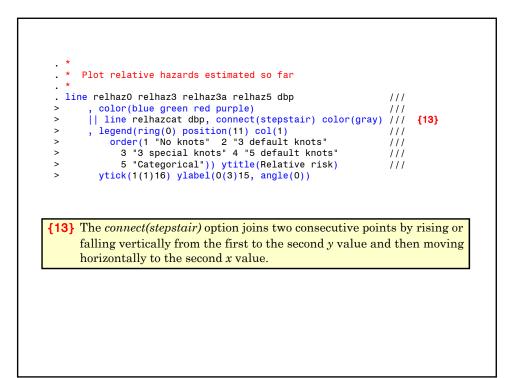
        Sdbp602
        -.2268319
        .1120642
        -2.02
        0.043

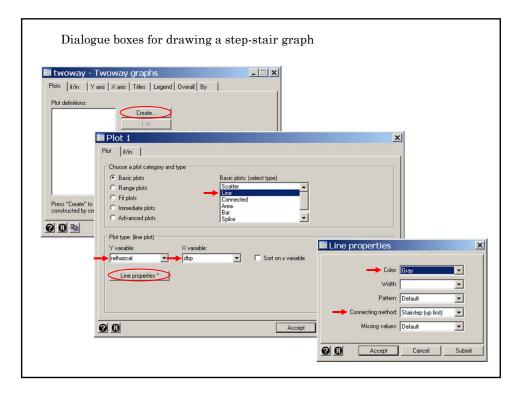

        Sdbp603
        .93755
        .4547913
        2.06
        0.039

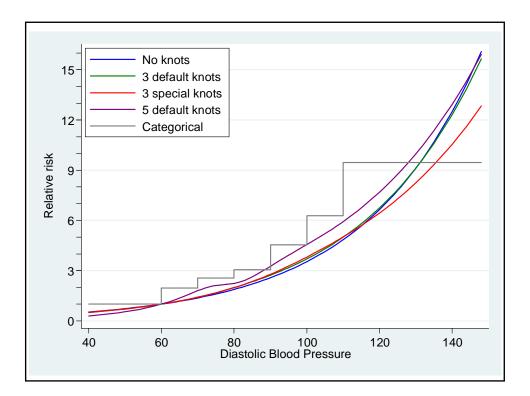

        Sdbp604
        -.982937
        .4821521
        -2.04
        0.041


                                                             * Statistics > Postestimation > Tests > Test linear hypotheses
. test _Sdbp602 _Sdbp603 _Sdbp604
                                                                                 {4}
( 1) _Sdbp602 = 0
( 2) _Sdbp603 = 0
 (3) _Sdbp604 = 0
            chi2( 3) =
                            4.66
         Prob > chi2 =
                           0.1984
```



Specification 2 Constructions are equal Specification 3 Coefficients in specific equation are 0 Specification 6 Coefficients equal between equations Specification 1. test these coefficients: Specification 2	Specification 2 Specification 3 Specification 4 Specification 5 Linear expressions are equal Coefficients in specific equation are 0 Coefficients equal between equations Specification 1, test these coefficients: Sdtp602_Sdtp603_Sdtp604 Image: Sdtp602_Sdtp603_Sdtp604 Image: Sdtp602_Sdtp603_Sdtp604 	Main Options Specifications: Specification 1 (required)	Test type for specification 1 Coefficients are 0	
► _Sdbp602_Sdbp603_Sdbp604	► _Sdbp602_Sdbp603_Sdbp604	Specification 2 Specification 3 Specification 4 Specification 5	C Linear expressions are equal C Coefficients in specific equation are 0	
		Specification 1, test these coefficients:		
OK Cancel Submit	Cancel Submit			
		00	ОК	Cancel Submit



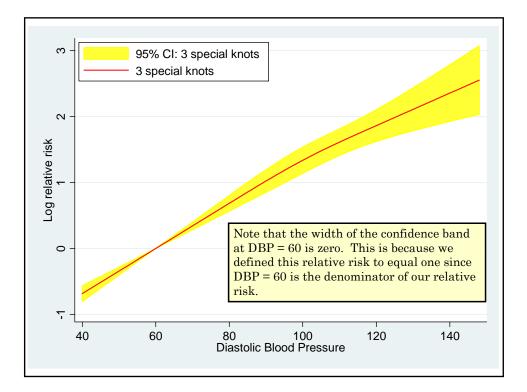

```
How about no knots?
 *
 * Statistics > Survival... > Regression... > Cox proportional hazards model
. stcox dbp60
                                                     {Output omitted}
Log likelihood = -11713.816
                                         Prob > chi2 = 0.0000
        _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
   ·····<del>·</del>·····
                                           dbp60 | 1.032064 .0019926 16.35 0.000 1.028166 1.035977
. predict relhaz0, hr
                                                                {9}
   Variables Manager
.
. drop _S*
. summarize dbp60, detail
                       dbp60
     .....
                Smallest
     Percentiles
        -2
1%
                      - 20
5%
            4
                       - 12
10%
            8
                       - 10
                                0bs
                                                4699
25%
           14
                      - 10
                                Sum of Wgt.
                                               4699
50%
           20
                                             22.5416
                                Mean
                    Largest
                                Std. Dev.
                                            12.73732
75%
           30
                        80
90%
           40
                        82
                                Variance
                                            162.2394
95%
            45
                        84
                                Skewness
                                             .6941674
                                                               {10}
99%
           60
                        88
                                Kurtosis
                                             4.147346
```

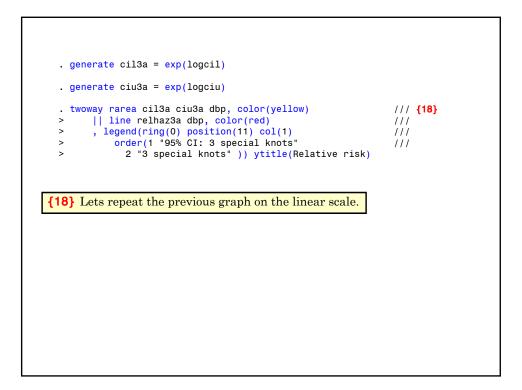


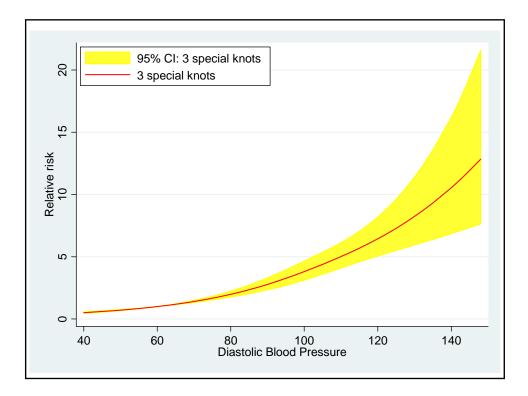
* Add a knot at DBP60 = 60 and remove the knot at DBP60 = 8 . . * . * Data > Create... > Other variable-creation... > linear and cubic... . mkspline _Sdbp60 = dbp60, knots(20 40 60) cubic displayknots knot1 knot2 knot3 dbp60 | 20 40 60 . * Statistics > Survival... > Regression... > Cox proportional hazards model . stcox _S*, nohr {Output omitted} Prob > chi2 = 0.0000 {11} Log likelihood = -11713.127 _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] _Sdbp601 | .0342387 .0030075 11.38 0.000 .0283442 .0401333 _Sdbp602 | -.0063964 .0055413 -1.15 0.248 -.0172571 .0044642 **{12}** . predict relhaz3a, hr **{11}** The log likelihood increases by a modest 0.69. **{12}** The second spline covariate is not significantly different from zero.

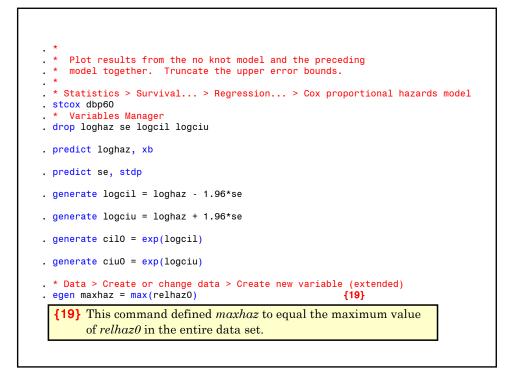
```
* Calculate the relative hazard from model 7.12 in the text
*
generate relhazcat = 1
. replace relhazcat = 1.97 if dbp > 60
(4549 real changes made)
. replace relhazcat = 2.56 if dbp > 70
(3775 real changes made)
. replace relhazcat = 3.06 if dbp > 80
(2308 real changes made)
. replace relhazcat = 4.54 if dbp > 90
(1041 real changes made)
. replace relhazcat = 6.29 if dbp > 100
(340 real changes made)
. replace relhazcat = 9.46 if dbp > 110
(105 real changes made)
```


Note that the categorical model has all patients with a $DBP \le 60$ in the denominator of the relative risk while for the other models this denominator is patients with DBP = 60. This explains why the categorical relative risks are higher than the risks for the other models.

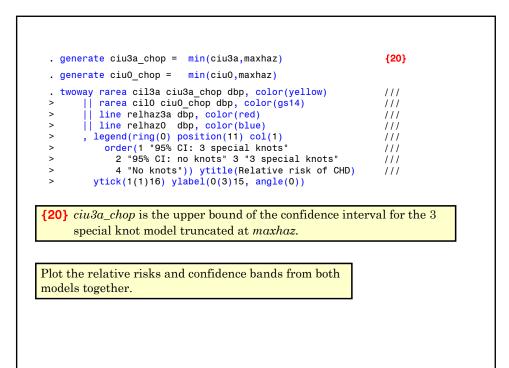

The no knot and default 3 knot models are in remarkably close agreement. The 3 special knot model agrees with the other two up to DBP = 120 and then gives lower risks. The no knot model may overestimate relative risks associated with extreme DBPs.

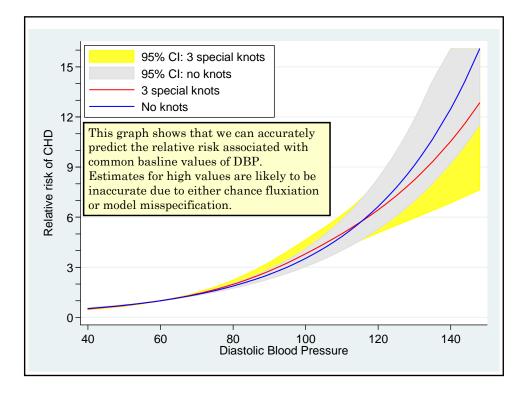

MPH Program, Biostatistics II W.D. Dupont

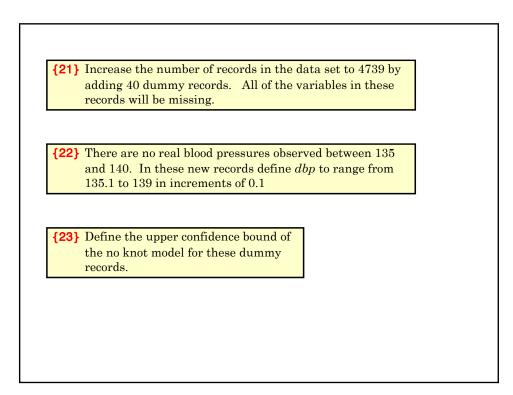

predict loghaz, xb	{14}
	or for the 3 special knot model. It is also
the log relative risk.	
predict - Prediction aft	ter estimation
Main if/in	
New variable name:	Manualdula
loghaz	New variable type:
	inda.
Produce:	
C Hazard ratio (relative hazard)	C Deviance residuals
Linear prediction	C Likelihood displacement values
C Standard error of the linear predict	
C Baseline survivor function	C Log-frailties
C Baseline cumulative hazard functi	
C Baseline hazard contributions	C DFBETA measures of influence
C Martingale residuals	C Schoenfeld residuals
C Cox-Snell residuals	C Scaled Schoenfeld residuals
Ignore offset variable (if any)	Doservation-level results
00	OK Cancel Submit

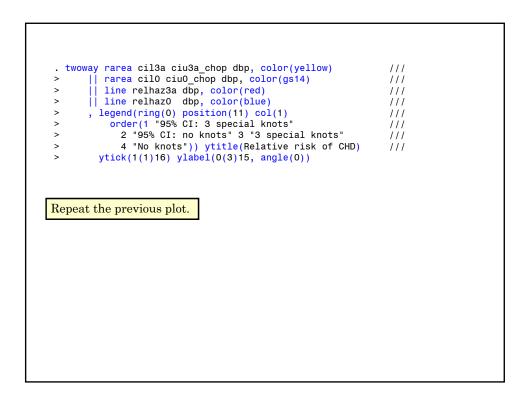

predict - Prediction after e	stimation	
Main if/in		
New variable name:	New variable type:	
Produce:	float	
Hazard ratio (relative hazard) Linear prediction Standard error of the linear prediction Baseline survivor function Baseline curulative hazard function Baseline hazard contributions Matingale residuals Cow-Snell residuals Ignore offset variable (if any)	Deviance residuals Likelihood displacement values Limax measures of influence Log-fraities Efficient acore residuals DFBETA measures of influence Schoenfeld residuals Scaled Schoenfeld residuals Dsservation-level results	
20	OK Cancel Submit	

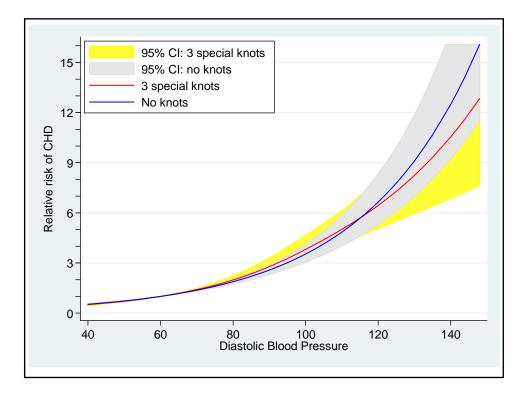
. generate logcil = loghaz - 1.96*se {16} generate logciu = loghaz + 1.96*se **{16**} . twoway rarea logcil logciu dbp, color(yellow) /// {17} > || line loghaz dbp, color(red) /// , legend(ring(0) position(11) col(1) order(1 "95% CI: 3 special knots" 2 "3 special knots")) ytitle(Log relative risk) > 111 > /// > **{16}** logcil and logciu are the 95% confidence bands for loghaz. **{17}** Plot the log relative risk of CHD together with its 95% confidence band.

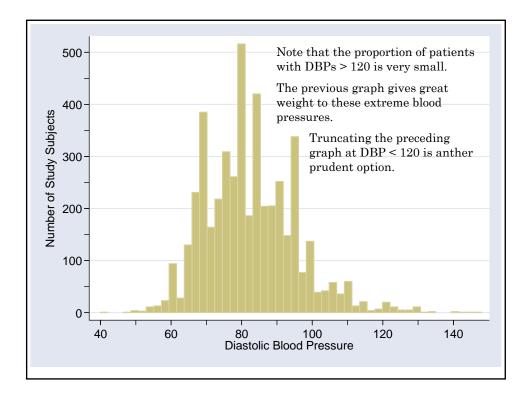







egen - Extensions	to generate		×
 Generate variable:	Generate variable as type:		1
Egen function:	Egen function argument Expression:		
Interquatile range Kurtosis Median absolute deviation Maximum Mean absolute deviation	relhaz0	Create	
1			
001	ОК	Cancel Submit	






```
In our final graphs we will want to truncate the upper
 \,\,\star\,\, error bands at the top of the graph. This can cause
* linear extrapolation errors due to sparse blood pressures
. * at the extreme upper range. To correct this we add
. * dummy records to fill in some of these blood pressures.
. *
. set obs 4739
                                                            {21}
obs was 4699, now 4739
. replace dbp = 135 +(_n - 4699)*0.1 if _n > 4699
                                                            {22}
(40 real changes made)
. replace dbp60 = dbp - 60
(40 real changes made)
. sort dbp
. * Variables Manager
. drop loghaz se logciu maxhaz ciu0
. predict loghaz, xb
. predict se, stdp
. generate logciu = loghaz +1.96*se
. generate ciu0 = exp(logciu)
. * Data > Create or change data > Create new variable (extended)
. egen maxhaz = max(relhaz0)
. replace ciu0_chop =
                        min(ciu0.maxhaz)
                                                            {23}
(40 real changes made)
```


5. Stratified Proportional Hazard Regression Models

One way to weaken the proportional hazards assumption is to subdivide the patients into j = 1, ..., J strata defined by the patient's covariates. We then define the hazard for the i^{th} patient from the j^{th} stratum at time t to be

$$\lambda_{ij}[t] = \lambda_{0j}[t] \exp\left[\beta_1 x_{ij1} + \beta_2 x_{ij2} + \dots + \beta_q x_{ijq}\right]$$

$$(6.3)$$

where $x_{ij1}, x_{ij2}, \dots, x_{ijq}$, are the covariate values for this patient, and

 $\lambda_{0j}[t]$ is the baseline hazard for patients from the j^{th} stratum.

Model 6.3 makes no assumptions about the shapes of the J baseline hazard functions. Within each strata the proportional hazards assumption applies. However, patients from different strata need not have proportional hazards.

MPH Program, Biostatistics II W.D. Dupont

For example, suppose that we were interested in the risk of CHD due to smoking in women and men. We might stratify the patients by gender, letting j = 1 or 2 designate men or women, respectively. Let

 $x_{ij} = \begin{cases} 1: \text{ if } i^{th} \text{ patient from } j^{th} \text{ stratum smokes} \\ 0: \text{ otherwise} \end{cases}, \text{ and}$

 $\lambda_{ii}[t]$ be the CHD hazard for the i^{th} patient from the j^{th} stratum.

{6.4}

Then Model 6.3 reduces to

 $\lambda_{ij}[t] = \lambda_{0j}[t] \exp[\beta x_{ij}]$

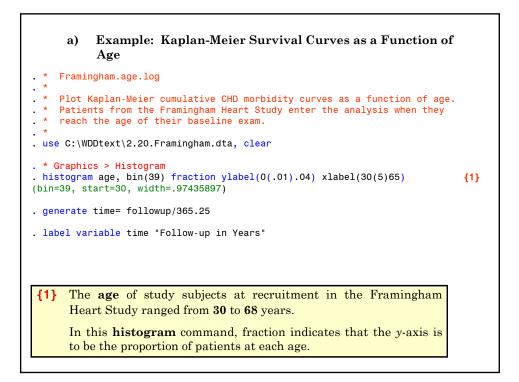
Model 6.4 makes no assumptions about how CHD risk varies with time among non-smoking men or women. It does, however, imply that the relative CHD risk of smoking is the same among men is it is among women.

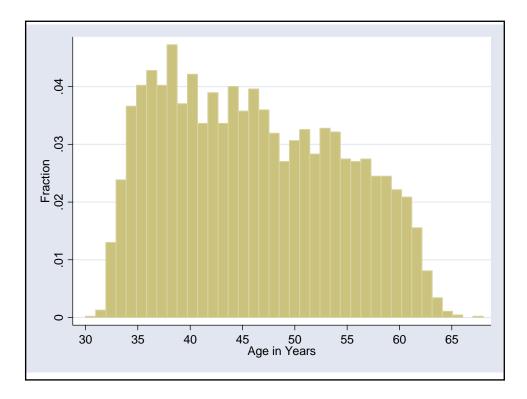
The within strata relative risk of CHD in smokers relative to nonsmokers is e^{β} . That is, smoking women have e^{β} times the CHD risk of non-smoking women while smoking men have e^{β} times the CHD risk of non-smoking men.

In this model $\lambda_{01}[t]$ and $\lambda_{02}[t]$ represent the CHD hazard for men and women who do not smoke, while $\lambda_{01}[t]e^{\beta}$ and $\lambda_{02}[t]e^{\beta}$ represents this hazard for men and women who do.

In Stata, a stratified proportional hazards model is indicated by the *strata(varnames)* option of the *stcox* command. Model $\{6.4\}$ might be implemented by a command such as

stcox smoke, strata(sex)

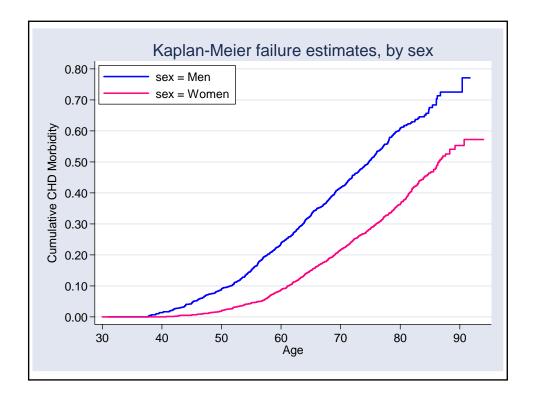

where smoke = 1 or 0 for patients who did or did not smoke, respectively.

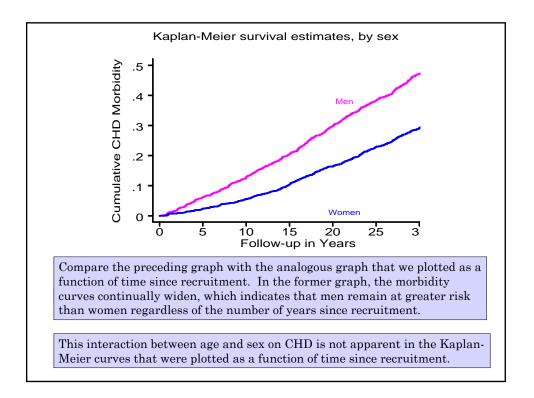

6. Survival Analysis with Ragged Study Entry

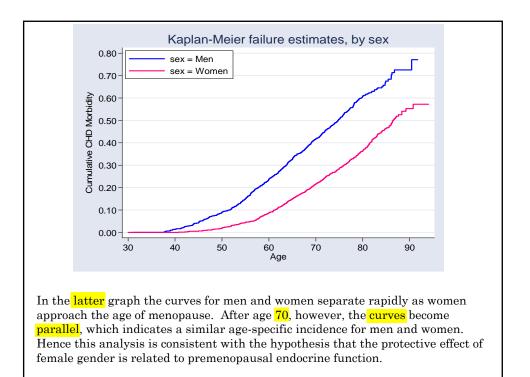
Usually the time variable in a survival analysis measures follow-up time from some event. This event may be recruitment into a cohort, diagnosis of cancer, et cetera. In such studies everyone is at risk at time zero, when they enter the cohort.

Sometimes, however, we may wish to use the patient's age as the time variable rather than follow-up time. Both Kaplan-Meier survival curves and hazard regression analyses can be easily adapted to this situation. The key difference is that when age is the time variable, patients are not at risk of failure until they reach the age at which they enter the cohort. Hence, no one may be at risk at age zero, and subjects will enter the analysis at different "times" when they reach their age at recruitment.

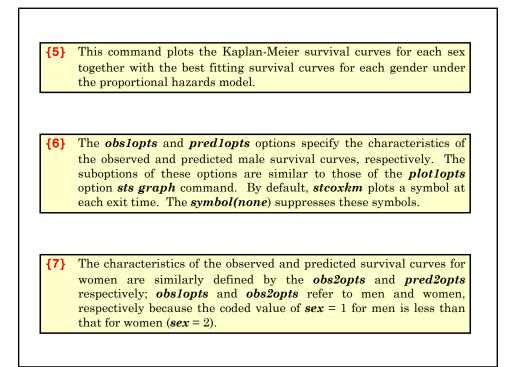
These analyses must be interpreted as the effect of age and other covariates on the risk of failure conditioned on the fact that each patient had not failed prior to her age of recruitment.

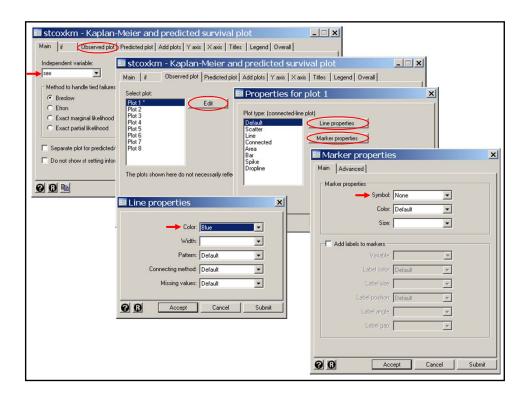

```
. generate exitage = time + age
                                                                           {2}
. label variable exitage Age
 * Statistics > Survival... > Setup... > Declare data to be survival...
                                                                          {3}
. stset exitage, enter(time age) failure(chdfate)
   failure event: chdfate != 0 & chdfate < .
obs. time interval: (0, exitage]
enter on or after: time age
exit on or before: failure
    4699 total obs.
      0 exclusions
4699 obs. remaining, representing
    1473 failures in single record/single failure data
103710.1 total analysis time at risk, at risk from t =
                                                              0
                           earliest observed entry t =
                                                             30
                                last observed exit t =
                                                             94
```


{3}	This command changes the survival-time variable from time since recruitment to age.
	exitage is the patient's time of exit. That is, it is the time (age) when the subject either suffers CHD or is censored.
	chdfate is the subject's fate at exit.
	enter(time age) defines age to be the patient's entry time. That is, patients enter the analysis when they reach the age of their baseline exam. We know that all patients were free from CHD at that time.

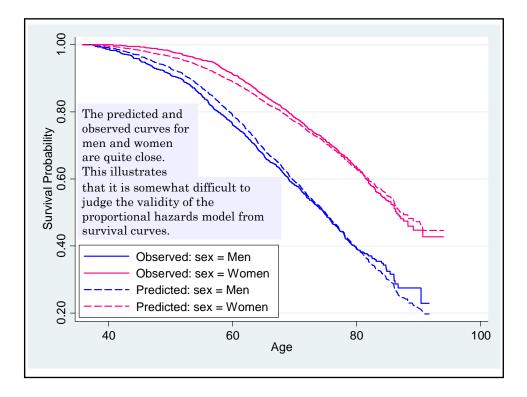

	Multiple-record ID variable:			
exitage 💌	<u> </u>			
Failure event				
Failure variable: Chdfate	Failure values:			
Do not show st setting informa	lion			
Clear all settings		🔤 stset - Declare da		-time data
		Main if Weights Op	otions Advanced	
		Specify when subject becom Origin variable:	nes at risk Origin values:	Origin time expression:
			ungin values.	Ungin ane expression.
				Rescale time value:
201	OK	Set origin to earliest time	observed minus 1 (rare)	1
		Specify when subject first en	nters study	
		Enter variable:	Enter values:	Enter time expression:
		¥	I	age
		and the second second second	tudy (default is exit at failure)	
		Specify when subject exits s		
		Specify when subject exits s Exit variable:	Exit values:	Exit time expression:

```
* Graphics > Survival analysis graphs > Kaplan-Meier failure function
.
  sts graph, by(sex) failure ytitle(Cumulative CHD Morbidity) xtitle(Age) /// {4}
      ylabel(0(.1).8, angle(0)) legend(ring(0) position(11) col(1))
>
                                                                              ///
      plot1opts(color(blue) lwidth(medthick))
plot2opts(color(pink) lwidth(medthick)) xlabel(30(10)90) noorigin
>
                                                                              111
>
   failure _d: chdfate
analysis time _t: exitage
  enter on or after: time age
         This command plots cumulative CHD morbidity as a function of
    4}
         age for men and women. noorigin specifies that the morbidity
         curves starts at the first exit age
         Strictly speaking these plots are for people who are free of CHD at
         age 30, since this is the earliest age at recruitment. However,
         since CHD is rare before age 30 these plots closely approximate
         the cumulative morbidity curves from birth.
```


🕫 sts graph - Graph the survivor a	nd cumulative bazard functions
	t Add plots Y axis X axis Titles Legend Overall
Function Graph Kaplan-Meier survivor function Graph Kaplan-Meier survivor function Graph Kaplan-Meier failure function Graph smoothed hazard estimate Make separate calculations by group Grouping variables: Sex Show plots on separate graphs Adjust the estimates to zero values of specified v.	Sts graph - Graph the survivor and cumulative hazard functions Main Wink table Options Plot C1 plot Add plots Y axis X axis Tables Legend Overall 35 Confidence level Plot censorings, entries, etc Plot censorings, entries, etc Plot censorings, entries, etc 10 Units used to report rates Do not show st setting information Maximum analysis time to be graphed Minimum analysis time to be graphed Minimum analysis time to be graphed Origin Gegin survivor (failure) curve where time equal zero State State
Show pointwise confidence bands	Begin survivor (failure) curve at first exit time Sts graph - Graph the survivor and cumulative hazard functions St graph - Graph the survivor and cumulative hazard functions St graph - Graph the survivor and cumulative hazard functions St graph - Graph the survivor and cumulative hazard functions St graph - Graph the survivor and cumulative hazard functions Main #/n At-risk table Options Plot CI plot Add plots Y axis X axis Titles Legend Overall Tale: Age Major tick/label properties Axis is cale properties Axis is cale properties
	Reference lines Image: Axis tick and label properties (x axis) (major x) Hide axis Rule Labels Ticks Grid Place axis on opposite side of graph Axis tule Image: Close default rule Image: Close default rule Image: Close default rule Image: Close default rule Close default rule Image: Close default rule Image: Close default rule Image: Close default rule Image: Close default rule Close default rule Image: Close default rule Image: Close default rule Image: Close default rule Image: Close default rule Close default rule Image: Close default rule Image: Close default rule Image: Close default rule Image: Close default rule Close default rule Image: Close default rule Image: Close default rule Image: Close default rule Image: Close default rule Close default rule Image: Close default rule Image: Close default rule Image: Close default rule Image: Close default rule Close default rule Image: Close default rule Image: Close default rule Image: Close default rule Image: Close default rule Close default rule Image: Close default rule Image: Close default rule Image: Close default rule Image: Close default rule Im




```
Compare Kaplan-Meier curve with best fitting survival curves under the
      proportional hazards model.
.
  *
    Graphics > Survival analysis graphs > Compare Kaplan-Meier and Cox survival...
.
  stcoxkm, by(sex) obs1opts(symbol(none) color(blue))
                                                                 ///
                                                                              {5}
>
       prediopts(symbol(none) color(blue) lpattern(dash))
                                                                111
                                                                              {6}
>
       obs2opts(`symbol(none) color(pink))
                                                                              {7}
                                                                 111
>
>
       pred2opts(symbol(none) color(pink) lpattern(dash))
                                                                 111
       legend(ring(0) position(7) col(1))
  failure _d: chdfate
analysis time _t: exitage
enter on or after: time age
```



🕫 stcoxkm - Kaplan-M	leier and predicted survival	plot		
	redicted plot Add plots Y axis X axis Title		1	
	stcoxkm - Kaplan-Meier an Main if Observed plot Predicted plot		and the second	
Method to handle tied failures		Properties for p	blot 2	
C Exact marginal likelihood C Exact partial likelihood	Plot 3 Plot 4 Plot 5 Plot 6 Plot 7 Plot 8	Default Scatter Line Connected	Line properties Marker properties	
Do not show st setting infor	The plots shown here do not necessarily refle-	Area Bar Spike Dropline	Marker properties	×
00			Marker properties	
E	Line properties	×	Color: Default	
	Color: Pink	· .	Size:	
	Width:		Add labels to markers	
	Pattern: Default Connecting method: Default	-	Variable:	
	Missing values: Default	<u> </u>	Label color. Default	
-			Label position: Default	
9	Accept Cancel	Submit	Label angle.	
			Label gap: 💌	
			Cancel Cancel	Submit

Stcoxkm - Kaplan-Meier	and predicted survival			
Independent variable: Isox Method to handle tied failures C Breslow C Etron C Exact marginal likelihood C Exact partial likelihood Separate plot for predicted/ Do not show st setting inforr The p	a Observed plot Predicted plot zt plot Edit Edit 2 Edit Edit 3 Edit Edit 4 5 6 7 6 7 8 Edit 1 alots shown here do not necessarily refle Vidits 1 1 b Color: Blue Vidits 1 Vidits: Dash Connecting method Default Missing values: Default 1 1	Titles Legend Overall lot 1	ak v	×
		C B Accept	Cancel Submit	

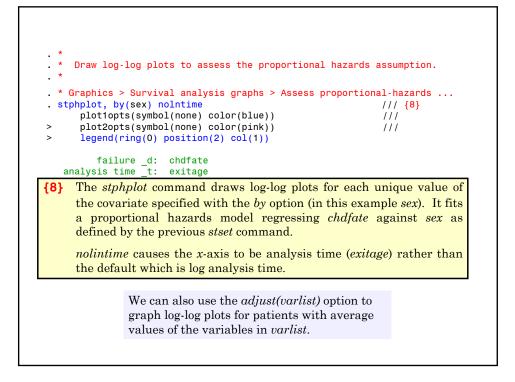
🔳 stcoxkm - Kaplan-M	Meier and predicted survival	plot		
Main if Observed plot	Predicted plot Add plots Y axis X axis Title	es Legend Overall		
In I consistent and			1	4
Independent variable:	🖴 stcoxkm - Kaplan-Meier ar	nd predicted surv	vival plot	1
sex 💌	Main if Observed plot Predicted plot	t Add plots Yaxis Xa:	xis Titles Legend Overall	
Method to handle tied failures			ulat 0	
Breslow	Select plot:	Properties for	plot 2	×
C Efron	Plot 2	Plot type: (connected-line	tola e	
C Exact marginal likelihood	Plot 3 Plot 4	Default	Line properties*	
C Exact partial likelihood	Plot 5 Plot 6	Scatter		
Separate plot for predicted/	Plot 7 Plot 8	Connected Area	Marker properties	
and the second s	Pioto	Bar	Marker properties	×
Do not show st setting inforr		Spike Dropline	Main Advanced	
	The plots shown here do not necessarily refle			1
00		1	Marker properties	
	Line properties	×	Symbol: None	
			Color: Default	
	Color: Pink		Size:	•
	Width:	_	Add labels to markers	
	Pattern: Dash		Variable:	v
	Connecting method: Default	-	Label color: Default	~
	Missing values: Default		Label size:	
	Historing Volucion D'eraduk			
			Label position: Default	Y
	Accept Cancel	Submit	Label angle:	v
-			Label gap:	-
				Coursel 1 Cohere 1
			C Accept	Cancel Submit

MPH Program, Biostatistics II W.D. Dupont

Under the proportional hazards assumption the survival function for the i^{th} patient is

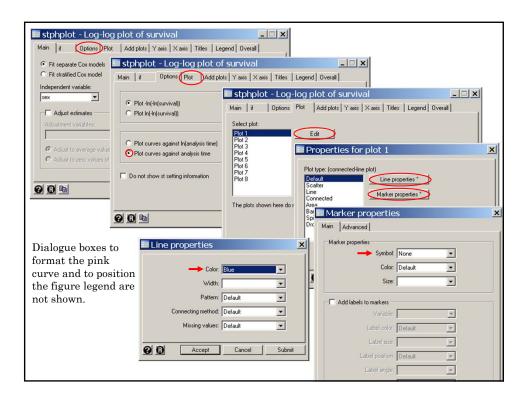
$$S_i[t] = \exp\left[-\exp\left[\beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_1 x_{iq}\right]\int_0^t \lambda_0[x]dx\right]$$

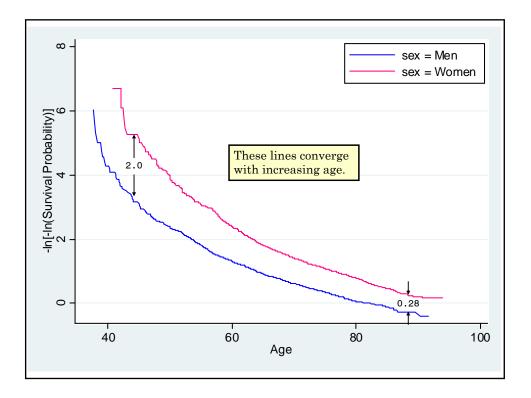
Hence,


$$\log[S_i[t]] = -\exp[\beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_1 x_{iq}] \int_0^t \lambda_0[x] dx$$

$$\log[-\log[S_i[t]]] = \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_1 x_{iq} + \log[\int_0^t \lambda_0[x] dx]$$

$$= \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_1 x_{iq} + f[t]$$


for some function f[t].


This means that if the proportional hazards assumption is true then plots of $\log[-\log[S_i[t]]]$ for different covariate values should be parallel. That is,

they should differ by
$$\beta_1(x_{i1} - x_{j1}) + \beta_2(x_{i2} - x_{j2}) + \dots + \beta_1(x_{iq} - x_{jq})$$
.

We draw such plots to visually evaluate the proportinal hazards assumption. *Framingham.age.log* continues as follows:

7. Hazard Regression Models with Time Dependent Covariates

The proportional hazards assumption can be weakened by using **time-dependent covariates**. That is, we assume that the i^{th} patient has *q* covariates

 $x_{i1}[t], x_{i2}[t], ..., x_{ia}[t]$

that are themselves functions of time t, and that the hazard function for this patient is

 $\lambda_{i}[t] = \lambda_{0}[t] \exp[x_{i1}[t]\beta_{1} + x_{i2}[t]\beta_{2} + \dots + x_{ia}[t]\beta_{a}]$

The simplest time dependent covariates are **step-functions**. For example, in the preceding graph of cumulative CHD morbidity by sex we saw strong evidence that the protective effect of being a woman varies with age. To estimate how the relative risk of being male varies with age we could define the following covariate functions. $x_{i1}(age) = \begin{cases} 1: i^{th} \text{ patient is a man } \leq \text{ age 50} \\ 0: \text{ Otherwise} \end{cases}$ $x_{i2}(age) = \begin{cases} 1: i^{th} \text{ patient is a man aged 50 - 60} \\ 0: \text{ Otherwise} \end{cases}$ $x_{i3}(age) = \begin{cases} 1: i^{th} \text{ patient is a man aged 60 - 70} \\ 0: \text{ Otherwise} \end{cases}$ $x_{i4}(age) = \begin{cases} 1: i^{th} \text{ patient is a man aged 70 - 80} \\ 0: \text{ Otherwise} \end{cases}$ $x_{i5}(age) = \begin{cases} 1: i^{th} \text{ patient is a man age > 80} \\ 0: \text{ Otherwise} \end{cases}$ $x_{ij}(age) \text{ are called step-functions} \text{ because they are constant and equal 1 on the specified age intervals and then step down to 0 for larger or smaller values of age.$ The hazard regression model is then

 $\lambda_i[age] = \lambda_0[age] \exp[x_{i1}[age]\beta_1 + x_{i2}[age]\beta_2 + \dots + x_{i5}[age]\beta_5]$

The functions $x_{i1}(age), x_{i2}(age), \dots, x_{i5}(age)$ are associated with five parameters $\beta_1, \beta_2, \dots, \beta_5$ that assess the effect of male gender on CHD risk before age 50, from age 50 to 60, 60 to 70, 70 to 80 and above 80, respectively.

Note that β_1 has no effect on CHD hazard after *age* 50 since $x_{i1}(t) = 0$ regardless of the patient's sex.

Similarly, the other β coefficients have no effect on CHD hazard on ages where their covariate functions are uniformly zero.

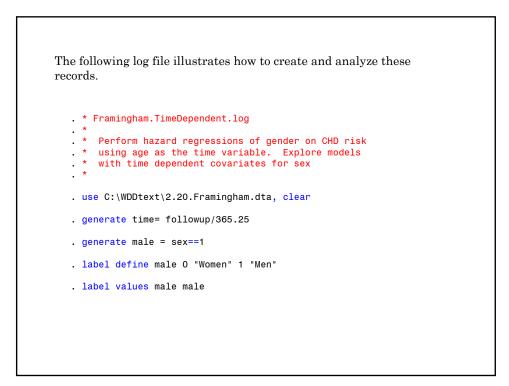
Hence $\beta_1, \beta_2, \dots, \beta_5$ are the log relative risks of CHD in men, before age 50, from age 50 to 60, 60 to 70, 70 to 80 and above 80, respectively.

a) Analyzing time-dependent covariates in Stata

Stata can handle hazard regression models with time dependent covariates that are step-functions. To do this we first must define multiple data records per patient in such a way that the covariate functions for the patient are constant for the period covered by each record. This is best explained by an example.

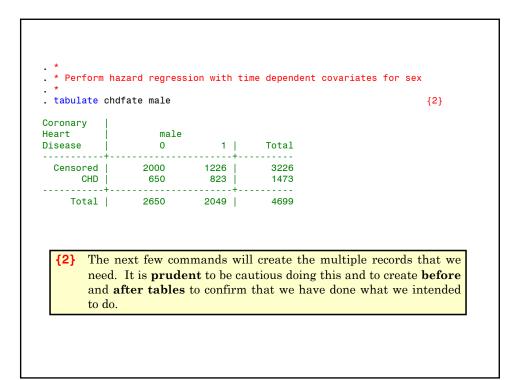
Suppose that a man with study ID 924 enters the Framingham study at age 32 and exits with CHD at age 63. Then

id = 924 age = 32 exitage = 63, and chdfate = 1.

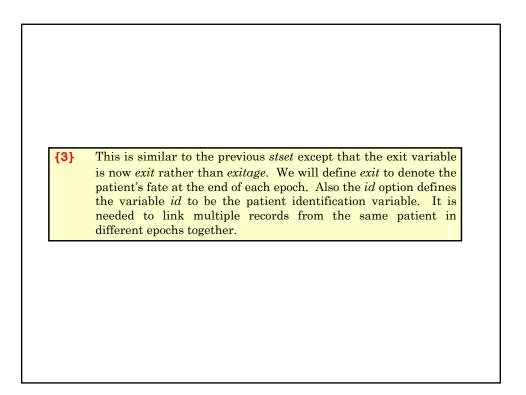

We replace the record for this patient with three records. One that describes his covariates for age 32 to age 50, another that describes his covariated from age 50 to 60, and a third that describes his covariates from age 60 to 63.

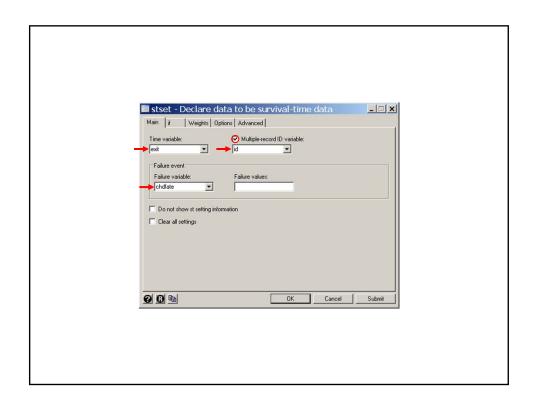
Let *male1*, *male2*, ..., *male5* denote $x_{i1}(age)$, $x_{i2}(age)$, ..., $x_{i5}(age)$, respectively, and let *enter*, *exit* and *fate* be new variables which we define in the following table.

id	male1	male 2	male3	enter	exit	fate
924	1	0	0	32	50	0
924	0	1	0	50	60	0
924	0	0	1	60	63	1


These records describe the patient in **three** age epochs: before age 50, between age 50 and 60, and after age 60. The patient enters the first epoch at age 32 when he enters the study and exits this epoch at age 50. During this time male1 = 1 and male2 = male3 = 0; fate = 0 since he has not suffered CHD. He enters the second epoch at age 50 and exits at age 60 without CHD. Hence, for this epoch male1 = male3 = 0, male2 = 1 and fate = 0. He enters the third epoch at age 60 and exits at age 62 with CHD. Hence, male1 = male2 = 0, male3 = 1 and fate = 1. male4 = male5 = 0 in all records since the patient never reaches age 70.

Time dependent analyses must have an ID variable that allows Stata to keep track of which records belong to which patients.




```
. *
    Calculate the relative risk of CHD for men relative to women using
. *
    age as the time variable.
. *
. generate exitage = age+time
. * Statistics > Survival... > Setup... > Declare data to be survival...
. stset exitage, enter(time age) failure(chdfate)
    failure event: chdfate != 0 & chdfate < .</pre>
obs. time interval: (0, exitage]
enter on or after: time age
exit on or before: failure
    4699 total obs.
     0 exclusions
-----
   4699 obs. remaining, representing
    1473 failures in single record/single failure data
                                                         0
 103710.1 total analysis time at risk, at risk from t =
                         earliest observed entry t =
                                                          30
                                                         94
                              last observed exit t =
```

```
. * Statistics > Survival... > Regression... > Cox proportional hazards model
. stcox male
                                                        {1}
      failure_d: chdfate
 analysis time_t: exitage
enter on or after: time age
Cox regression - Breslow method for ties
                 4699
1473
No. of subjects =
                                          Number of obs
                                                           4699
                                                        =
No. of failures =
Time at risk = 103710.0914
                                        LR chi2(1) = 177.15
Prob > chi2 = 0.0000
Log likelihood = -11218.785
                                                   . . . . . . . . . . . . . .
    _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
----+
  male | 2.011662 .1060464 13.26 0.000 1.814192 2.230626
        -----
                                       First, we run the proportional hazards analysis of the effect of gender
 {1}
       on CHD. This analysis estimates that men have 2.01 times the CHD
       risk of women, with overwhelming statistical significance.
```

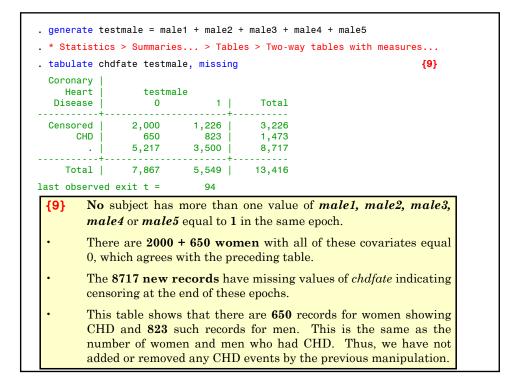


```
. *
    Split each patient's record into one or more records so that each
 *
    record describes one epoch with constant covariates for the epoch.
.
 *
 generate exit = exitage
 * Statistics > Survival... > Setup... > Declare data to be survival...
. stset exit, id(id) enter(time age) failure(chdfate)
                                                            {3}
             id: id
    failure event: chdfate != 0 & chdfate < .</pre>
obs. time interval: (exit[_n-1], exit]
enter on or after: time age
exit on or before: failure
   4699 total obs.
     0 exclusions
4699 obs. remaining, representing
    4699 subjects
1473 failures in single failure-per-subject data
103710.1 total analysis time at risk, at risk from t =
                                                          0
                         earliest observed entry t =
                                                         30
                              last observed exit t =
                                                         94
```


	id male	age	exit	chdfate		
82.	924 Men	32	63.23888	CHD		
	•	fain if Type I Split at desi		records	Survival settings	
		C Split at failu C Join episod	es			
		enter	rd time interval to which e New variable r		ongs	
			at which the records are to s at specified analysis time 30 Analysis ti	is		
			s at each positive multiple Number	of a number		

<pre></pre>	<pre>++ * Statistics > Survival > Setup > Split time-span records ************************************</pre>	<pre>++ * Statistics > Survival > Setup > Split time-span records stsplit enter, at(50 60 70 80) {4} 717 observations (episodes) created) list id male enter exit chdfate if id == 924 ++ id male enter exit chdfate </pre>					exit c		
tsplit enter, at (50 60 70 80) {4} 17 observations (episodes) created) ist id male enter exit chdfate if id == 924 ist id male enter exit chdfate if id == 924 40. 924 Men 0 50 . 41. 924	<pre>tsplit enter, at (50 60 70 80) {4} 17 observations (episodes) created) ist id male enter exit chdfate if id == 924 +</pre>	<pre>tsplit enter, at(50 60 70 80)</pre>	2.	924	Men	32 60	3.23888	CHD	
40. 924 Men 0 50 . 41. 924 Men 50 60 .	40. 924 Men 0 50 . 41. 924 Men 50 60 . 42. 924 Men 60 63.23888 CHD	40. 924 Men 0 50 . 41. 924 Men 50 60 . 42. 924 Men 60 63.23888 CHD		id male	e enter	exit cho	dfate if id	+	
041. 924 Men 50 60 .	041. 924 Men 50 60 . 042. 924 Men 60 63.23888 CHD								
	042. 924 Men 60 63.23888 CHD	942. 924 Men 60 63.23888 CHD	940.	924	Men	0	50		

{4} This command creates up to 5 epochs for each patient: before age 50, between 50 and 60, 60 and 70, 70 and 80, and after age 80.


For each patient, a separate record is created for each epoch that the patient experienced during follow-up.

- The *newvar* variable, (in this example *enter*) is set equal to the start of the patient's first epoch. That is, to the start of the latest epoch that is less than *age*. Stata considers the first epoch to start at age zero.
- The *timevar* of the last *stset* command, (in this example *exit*) is changed to equal the end of the epoch for all but the last record.

The fate variable of the last *stset* command, (in this example *chdfate*) is set to missing for all but each patient's last record. *stcox* will treat patients with missing fate variables as being censored at the end of the epoch.

4451 real changes made)									(0)
<pre>generate male1 = male*(exit <= 50)</pre>									{6 }
<pre>generate male2 = male*(enter >= 50 & exit <= 60)</pre>								{7}	
gener	<mark>ate</mark> ma	le3 = m	ale*(er	nter >=	60 <mark>&</mark> ex	(it <= 7	0)		
gener	ate ma	1e4 = m	ale*(er	ter >=	70 <mark>%</mark> ex	(it <= 8	0)		
							~,		
				nter >= List da					
* Data > Describe data > List data list id male? enter exit chdfate if id == 924								{8}	
	id							exit	
7940.								exit 50	
7941.	924 924	1 0	0 1	0 0	0 0	0	32 50	50 60	· · · · · · · · · · · · · · · · · · ·

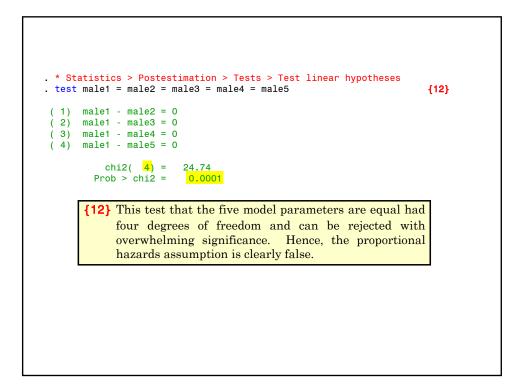
{5} Replace enter by the patient's age of entry for each patient's first record. This correction must be made whenever we have ragged entry since stsplit assumes that all patients enter at time zero.
{6} male1 = 1 if and only if the subject is male and we are in the first epoch.
{7} male2 = 1 if and only if the subject is male and we are in the second epoch. male3, male4 and male5 are similarly defined.
{8} male? Designates all variables that start with "male" and end with exactly one character. I.e. male1, male2, ..., male5. Note that these covariates are now correctly defined and are constant within each epoch.

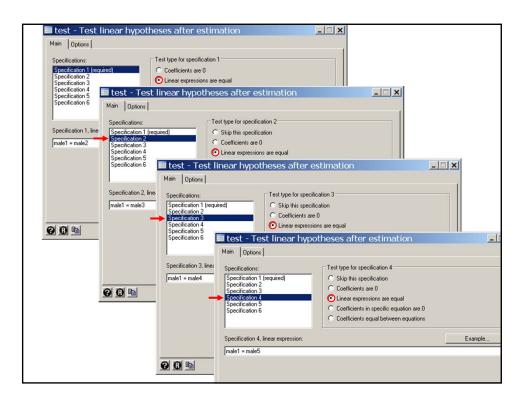
. * Statistics > Summaries... > Tables > Two-way tables with measures... . tabulate chdfate male Coronary Heart male Disease 0 1 Total ----+ ----+-- - - - - - - - -Censored | 2000 1226 3226 CHD 823 1473 650 ----Total | 2650 2049 4699

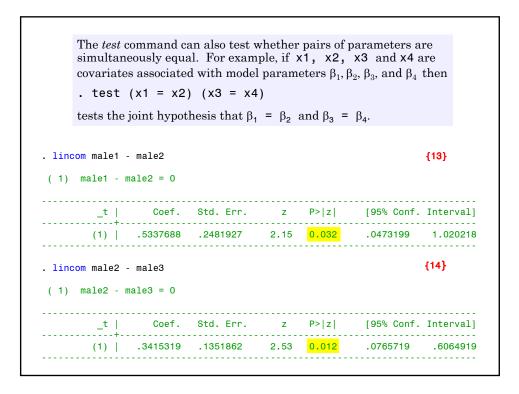
```
. * Statistics > Survival... > Setup... > Declare data to be survival...
. stset exit, id(id) enter(time enter) failure(chdfate)
                                                                 {10}
              id: id
failure event: chdfate != 0 & chdfate < .
obs. time interval: (exit[_n-1], exit]</pre>
 enter on or after: time enter
 exit on or before: failure
_____
   13416 total obs.
      0 exclusions
   13416 obs. remaining, representing
    4699 subjects
    1473 failures in single failure-per-subject data
 103710.1 total analysis time at risk, at risk from t =
                                                             0
                          earliest observed entry t =
                                                            30
                               last observed exit t =
                                                            94
         We define id to be the patient ID variable,
  {10}
                  enter to be the patient's age at entry,
                  exit to be the exit time, and
                  chdfate to be the fate indicator.
         The stset command also checks the data for errors or
         inconsistencies in the definition of these variables.
```

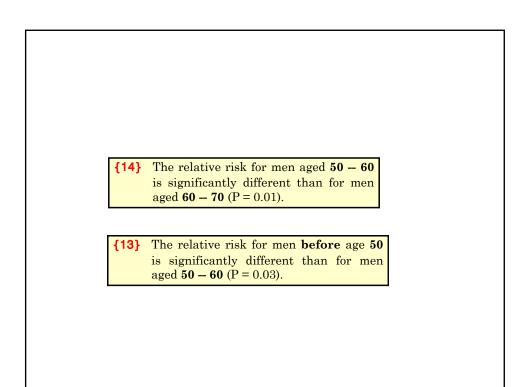
```
. * Statistics > Survival... > Regression... > Cox proportional hazards model
. stcox male?
                                                                            {11}
          failure _d: chdfate
  analysis time _t: exit
enter on or after: time enter
                  id: id
Cox regression -- Breslow method for ties
No. of subjects =
                            4699
                                                        Number of obs =
                                                                                13416
No. of failures =
                            1473
Time at risk
                = 103710.0914
                                                                       =
                                                        LR chi2(5)
                                                                               203.92
Log likelihood = -11205.396
                                                        Prob > chi2
                                                                        =
                                                                               0.0000
          _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
     ____+
                 4.22961 .9479718 6.43 0.000
2.480204 .264424 8.52 0.000
       male1 |
                                                              2.72598
                                                                             6,562631
                                                            2.012508 3.056591
       male2 |

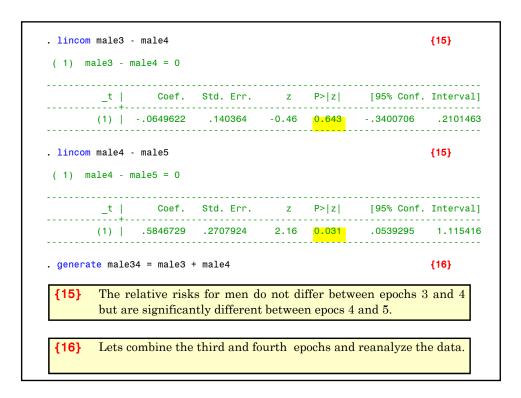
        male3
        1.762634
        .1465087
        6.82
        0.000

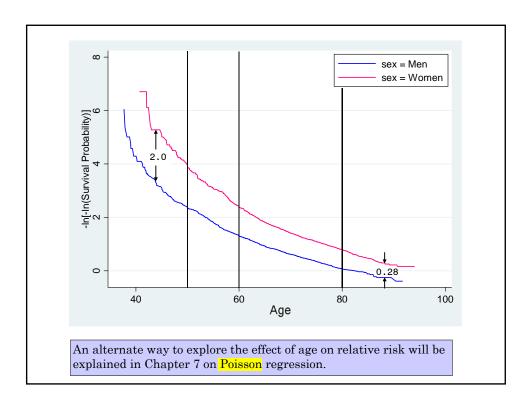

        male4
        1.880939
        .2127479
        5.59
        0.000


        male5
        1.048225
        .2579044
        0.19
        0.848


                                                            1.49702.
1.506946 2.3477
.6471809 1.697788
                                                               1.497652 2.074499
               _____
          Finally we perform a hazard regression analysis with the time
  {11}
          dependent covariates male1, male2, ..., male5. Note how the
          relative risks for men drop with increasing age.
```


```
The data management commands in the preceding example were
  generate exit = exitage
  stset exit, id(id) enter(time age) failure(chdfate)
  stsplit enter, at(50 60 70 80)
  replace enter=age if id~=id[_n-1]
  generate male1 = male*(
                                        exit <= 50)
  generate male2 = male* (enter >= 50 & exit <= 60)
  generate male3 = male*(enter >= 60 & exit <= 70)</pre>
  generate male4 = male* (enter >= 70 & exit <= 80)
  generate male5 = male*(enter >= 80)
  stset exit, id(id) enter(time age) failure(chdfate)
The highlighted lines are needed because of the ragged entry into the study.
If all patients entered the study at time 0 (in this example birth) and were
followed until time follow then the analogous commands would be
  generate exit = follow
  stset exit, id(id) failure(chdfate)
  stsplit enter, at(50 60 70 80)
  generate male1 = male*(
                                        exit <= 50
  generate male2 = male*(enter >= 50 & exit <= 60)</pre>
  generate male3 = male*(enter >= 60 & exit <= 70)</pre>
  generate male4 = male*(enter >= 70 & exit <= 80)
  generate male5 = male*(enter >= 80)
  stset exit, id(id) failure(chdfate)
Note that by default stsplit sets the beginning of the first epoch to 0,
which is what we want when time measures time since recruitment.
```


8. Testing the Proportional Hazards Assumption
In the preceding example, suppose that β₁ = β₂ = β₃ = β₄ = β₅ = β
Then our model is
λ_i[age] = λ₀[age]exp[x_{i1}[age]β₁ + x_{i2}[age]β₂ + ... + x_{i5}[age]β₅] = λ₀[age]exp[(x_{i1}[age] + x_{i2}[age] + ... + x_{i5}[age])β] = λ₀[age]exp[male × β]
which obeys the proportional hazards assumption.
Hence, we can test the proportional hazards assumption by testing whether β₁ = β₂ = β₃ = β₄ = β₅
We can test this hypothesis in Stata using the *lest* post estimation command.
We illustrate this test in *Framingham.TimeDependent.log*, which continues as follows:




```
. * Statistics > Survival... > Regression... > Cox proportional hazards model
. stcox male1 male2 male34 male5
       failure _d: chdfate
  analysis time t: exit
 enter on or after: time enter
             id: id
No. of subjects = 4699
No. of failures = 1473
                                            Number of obs =
                                                             13416
Time at risk = 103710.0914
                                            LR chi2(4)
                                                         =
                                                               203.71
                                           Prob > chi2 = 0.0000
Log likelihood = -11205.503
 _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
    male1 | 4.22961 .9479718 6.43 <mark>0.000</mark> 2.72598 6.562631
    male22.480204.2644248.520.0002.0125083.056591male341.803271.12084788.800.0001.5813092.056387male51.048225.25790440.190.848.64718091.697788
     -----
                                            ____
. * Statistics > Postestimation > Tests > Test linear hypotheses
. test male1 = male2 = male34 = male5
 (1) male1 - male2 = 0
 (2) male1 - male34 = 0
(3) male1 - male5 = 0
       chi2( 3) = 24.52
Prob > chi2 = 0.0000
```

```
. lincom male1 - male2
(1) male1 - male2 = 0
_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]
   (1) | .5337688 .2481927 2.15 0.032 .0473199 1.020218
. lincom male2 - male34
(1) male2 - male34 = 0
_____
_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]
   (1) | .318739 .1259271 2.53 0.011 .0719264 .5655516
、 , , ,
. lincom male34 - male5
(1) male34 - male5 = 0
_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]
   (1) | .5425036 .2550027 2.13 0.033 .0427074 1.0423
```


9. What we have covered
 Extend simple proportional hazards regression to models with multiple covariates
Model parameters, hazard ratios and relative risks
 Similarities between hazard regression and linear regression
 Categorical variables, multiplicative models, models with interaction
Estimating the effects of two risk factors on a relative risk
Calculating 95% CIs for relative risks derived from multiple
parameter estimates.
Adjusting for confounding variables
Restricted cubic splines and survival analysis
 Stratified proportional hazards regression models
Using age as the time variable in survival analysis
Ragged study entry: the enter(time varname) option
of the <i>stset</i> command
Checking the proportional hazards assumption
Comparing Kaplan-Meier plots to analogous plots drawn under the
proportional hazards assumption: the <i>stcoxkm</i> command
Log-log plots: the stphplot command
 Hazards regression models with time-dependent covariates
> Testing the proportional hazards assumption: the <i>test</i> command

Cited Reference

Levy D, National Heart Lung and Blood Institute., Center for Bio-Medical Communication. 50 Years of Discovery : Medical Milestones from the National Heart, Lung, and Blood Institute's Framingham Heart Study. Hackensack, N.J.: Center for Bio-Medical Communication Inc.; 1999.

For additional references on these notes see.

Dupont WD. Statistical Modeling for Biomedical Researchers: A Simple Introduction to the Analysis of Complex Data. 2nd ed. Cambridge, U.K.: Cambridge University Press; 2009.