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1.        Elementary Statistics Involving Rates

The Framingham Heart Study data set contains information on 4,699 
subjects with 103,710 patient-years of follow-up.  We can extract the 
following table from this data.

Men Women Total

Cases of Coronary 
Heart Disease

823 650 1,473

Person-years of 
Follow-up

42,259 61,451 103,710

1d  0d 

1n  0n 
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a)  Incidence

The incidence of CHD in men is        

= 823/42,259

= 0.01948.

The incidence of CHD in women is

= 650/61,451

= 0.01058

d n1 1/

d n0 0/

b)   Relative Risk

The relative risk of CHD in men compared to women is estimated by 

= 0.01948/0.01058 = 1.841.1 1 0 0
ˆ ( / ) /( / )R d n d n

c)   95% confidence interval for a relative risk

If di is small compared to ni (i = 0 or 1) then

The variance of (log     ) is approximated by

{7.1}

= 0.002754 

R

2
ˆlog( )

1 0

1 1
R

s
d d

 

1 1
823 650

 

Hence a 95% confidence interval for R is

{7.2}

= [ 1.841 exp(-1.96 ), 1.841 exp(0.1029)] 

= [1.66, 2.04] 

 ˆ0.025 log( )
ˆ exp

R
R z s

0.002754

In Stata these calculations are done as follows: 
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|   Exposed   Unexposed  |      Total
-----------------+------------------------+------------

Cases |       823         650  |       1473
Person-time |     42259       61451  |     103710

-----------------+------------------------+------------
|                        |

Incidence rate |  .0194751    .0105775  |   .0142031
|                        |
|      Point estimate    |    [95% Conf. Interval]
|------------------------+------------------------

Inc. rate diff. |         .0088976       |    .0073383     .010457 
Inc. rate ratio |          1.84118       |    1.659204    2.043774 (exact)
Attr. frac. ex. |           .45687       |    .3973015     .510709 (exact)
Attr. frac. pop |         .2552641       |

+-------------------------------------------------
(midp)   Pr(k>=823) =                   0.0000 (exact)
(midp) 2*Pr(k>=823) =                   0.0000 (exact)

. * 8.2.Framingham.log

. *

. *  Estimate the crude (unadjusted) relative risk of 

. *  coronary heart disease in men compared to women using

. *  person-year data from the Framingham Heart Study (Levy 1999).

. *

. * Statistics > Epidemiology... > Tables... > Incidence-rate ratio calculator

. iri 823 650 42259 61451 {1}

{1} The ir command is used for incidence rate data.

Shown here is the immediate version of this command, called iri,
which analyses the four data values given in the command line.

These data are the number exposed and unexposed cases together
with the person-years of follow of exposed and unexposed subjects.
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. *

. *  The equivalent ir command is illustrated below.

. * 

. use 8.2.Framingham.dta, clear

. * Data > Describe data > List data

. list

+------------------------+
|  male   chd   per_yrs  |
|------------------------|

1. | Women   650      61451 |
2. |   Men   823      42259 |

+------------------------+

. * Statistics > Epidemiology... > Tables ... > Incidence-rate ratio

. ir chd male per_yrs {2}
| Male                   |
|   Exposed   Unexposed  |      Total

-----------------+------------------------+------------
CHD patients |       823         650  |       1473

P-yrs follow-up |     42259       61451  |     103710
-----------------+------------------------+------------

|                        |
Incidence rate |  .0194751    .0105775  |   .0142031

|                        |
|      Point estimate    |    [95% Conf. Interval]
|------------------------+------------------------

Inc. rate diff. |         .0088976       |    .0073383     .010457 
Inc. rate ratio |          1.84118       |    1.659204    2.043774 (exact)
Attr. frac. ex. |           .45687       |    .3973015     .510709 (exact)
Attr. frac. pop |         .2552641       |

+-------------------------------------------------
(midp)   Pr(k>=823) =                   0.0000 (exact)
(midp) 2*Pr(k>=823) =                   0.0000 (exact)

{2} Here is the conventional version of this command. Person-years of
follow-up may be distributed over multiple records. If there is one
record per subject then
per_yrs gives each subject’s years of follow-up;
chd = 1 if the subject had CHD, 0 otherwise; and
male = 1 for men, 0 for women.
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We next introduce Poisson regression which is used for 
analyzing rates.  

Poisson regression is used when the original data available to us is 
expressed as events per person-years of observation.

Poisson regression is also useful for analyzing data from large 
cohorts when the proportional hazards assumption is false.  In this 
situation Poisson regression is quicker and easier to use than hazard 
regression with time-dependent covariates.
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2. The Binomial and Poisson Distribution

Let

n be the number of people at risk of death

d be the number of deaths

 be the probability that any patient dies.

Then d has a binomial distribution with parameters n and ,

mean n, and

variance     n(1-). 

Pr[d deaths]

= {7.3}( )!
(1 )

( )! !
d n dn

n d d
  



Poisson (1781–1849) showed that when n is large and  is small the 
distribution of d is closely approximated by the Poisson distribution, 
whose mean and variance both equal n = .

Pr[d deaths] = {7.4}

Although it is not obvious from these formulas, the convergence of the 
binomial distribution to the Poisson is quite rapid.

( )

!

de

d

 
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3. Poisson Regression and the 2x2 Contingency Table

a)  True and estimated death rates and relative risks

Consider a 2x2 contingency table

Died Exposed

Yes      No

Yes d1 d0

No n1-d1 n0-d0

Total n1 n0

Let

i be the true death rate in people who are (i = 1) or are 
not (i = 0) exposed. 
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The expected number of deaths in group i is E(di) = nii.

For any constant k and statistic d, E(kd) = kE(d) 

Died Exposed

Yes      No

Yes d1 d0

No n1-d1 n0-d0

Total n1 n0

Let

i be the true death rate in people who are (i = 1) or are 
not (i = 0) exposed. 

Then

is the relative risk of death associated with exposure 
and                 ,

is the estimated death rate in people who are (i=1) 
or are not (i=0) exposed, and

is the estimated relative risk of death associated 
with exposure.

 1 0 R
R   1 0/

 / i i id n

  / R   1 0

Now

log                                           , and

log

But 

log

0 0 0 0 0 0
ˆ[ ] [ / ] [ ] /E E d n E d n   

0 0 0[ ] log[ [ ]] log[ ]E d n  

1 1 1[ ] log[ [ ]] log[ ]E d n  

1 0[ ] log[ ] log[ ]R  

Hence

log

log

0 0 0[ [ ]] log[ ] log[ ]E d n  

1 1 0[ [ ]] log[ ] log[ ] log[ ]E d n R  

Let  = log       ,

 = log      ,

= 0, and       = 1. 

0[ ]

[ ]R

x0 1x
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Then

log[E[di]] = log[ni] +  + xi  for  i = 0 or 1, {7.5}

where di has a Poisson distribution whose mean and variance are 
estimated by di.  

This is the simplest of all possible Poisson regression models.

b)  Estimating relative risks from the model coefficients

Our primary interest is in .  Given an estimate  of 

then  
R e 

c)  Nuisance parameters

 is called a nuisance parameter.  This is one that is required by 
the model but is not used to calculate interesting statistics

d)  Offsets

log (ni) is a known quantity that must be included in the model.  It is 
called an offset. 

4. Poisson Regression and Generalized Linear Models

Poisson regression is another example of a generalized  linear 
model. The random component, linear predictor and link function 
for Poisson regression are as follows.

a)  The random component

di     is the random component of the model.  In Poisson       
regression, di has a Poisson distribution with mean E(di).

b)   The linear predictor

log(ni) +  + xi  is called the linear predictor. 

c)   Link function

E(di)  is related to the linear predictor through a logarithmic link 
function.
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5. Contrast Between Simple Poisson Logistic and Linear      
Regression

The models:

Linear                                   for i = 1, 2, …, n.

Logistic logit(E(di/mi)) =  + xi  for  i = 0 or 1, 

Poisson log(E(di)) = log(ni) +  + xi  for  i = 0 or 1,

E y xi i( )   

Linear Regression –

In linear regression the random component is yi , which has a 
normal distribution with standard deviation .  The linear predictor
is              and the link function is the identity function I(x) = x.         

n must be fairly large since we must estimate  before we can estimate 
 or . 

  xi

Logistic Regression –

In logistic regression we observe di events in mi trials. The random
component is di, which has a binomial distribution.  The linear 
predictor is             .  The model has a logit link function.  xi

Poisson Regression –

In Poisson regression we observe di events in ni trials.  The random 
component is di, which has a Poisson distribution.  The linear 
predictor is log(ni) +             .  The model has a logarithmic link 
function. 

  xi

In Poisson and logistic regression examples i has only 2 values. It is 
possible to estimate  from these equations since we have reasonable 
estimates of the mean and variance of di for both of these models. 



MPH Program,  Biostatistics      
W.D. Dupont

February 18, 2011

7:  Introduction to Poisson regression 7.11

Poisson regression models generalize in the usual way.  For example, 
suppose

ix i for i = 1 to 3 denotes three levels of a risk factor.  Then a simple 
Poisson regression model would be

log(E(di)) = log(ni) +  + 2 2 3 3i iz z  

where

id is the number of deaths observed in     person-years of follow-up 
in group i, 

in

2

1 : 2          

0 :  otherwisei

i
z


 


and 3

1 : 3          

0 :  otherwisei

i
z


 


.

{7.6}

Subtracting              from both sides of equation {7.6} gives log in

       log E / log E / logi i i i id n d n   2 2 3 3i iz z     

where      is the true death rate for patients with risk level i.i

{7.7}

       log E / log E / logi i i i id n d n   2 2 3 3i iz z      {7.7}

When i =2 {7.7} reduces to 

 2 2log     {7.8}

When i =1 {7.7} reduces to 

 1log    {7.9}

Subtracting {7.9} from {7.8} gives

 2 1 2log /   

Hence       equals the log relative risk of patients in group 2 relative to 
group 1.

2

Similarly,       equals the log relative risk of patients in group 3 
relative to group 1.

3
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6. Analyzing a 2x2 Contingency Table with Stata

a)   Example:  Gender and Coronary Heart Disease

. *  8.7.Framingham.log

. *

. *  Simple Poisson regression analysis of the effect of gender on 

. *  Coronary heart disease in the Framingham Heart Study

. *

. use 2.20.Framingham.dta, clear

. gen male = sex==1

. gen per_yrs = followup/365.25

. * Statistics > Summaries, ... > Tables > Table of summary statistics (table)

. table male, contents(sum chdfate sum per_yrs) {1}

--------------------------------------
male | sum(chdfate)  sum(per_yrs)

----------+---------------------------
0 |          650      61451.17
1 |          823      42258.92

--------------------------------------
{1} Tabulate the sum of chdfate and per_yrs by gender.  Recall that 

2.20.Framingham.dta contains one record per patient, with 
followup giving the number of days of follow-up for each patient.
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. * Statistics > Generalized linear models > Generalized linear models (GLM)

. glm chdfate male , family(poisson) link(log) lnoffset(per_yrs) {2}

Iteration 0:   log likelihood = -4240.3694  
Iteration 1:   log likelihood =  -3906.885  
Iteration 2:   log likelihood = -3906.5506  
Iteration 3:   log likelihood = -3906.5505  

Generalized linear models                          No. of obs      =      4699
Optimization     : ML                              Residual df     =      4697

Scale parameter =         1
Deviance         =  4867.101078                    (1/df) Deviance =  1.036215
Pearson          =  12820.44155                    (1/df) Pearson  =  2.729496

Variance function: V(u) = u                        [Poisson]
Link function    : g(u) = ln(u)                    [Log]

AIC             =  1.663567
Log likelihood   = -3906.550539                    BIC             = -34846.53

------------------------------------------------------------------------------
|                 OIM

chdfate |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

male |   .6104111   .0524741    11.63   0.000     .5075638    .7132584
_cons |  -4.549026   .0392232  -115.98   0.000    -4.625902    -4.47215

per_yrs | (exposure)
------------------------------------------------------------------------------

{2} Regress chdfate against male.  The options family(poisson) and 
link(log) specify that Poisson regression is to be used.  
lnoffset(per_yrs) specifies that the logarithm of per_yrs is to be 
used as an offset.  In short, this statement specifies model 

log[E[chd]] = log[per_yrs] +  + male 
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The exposure and lnoffset
options are identical.  They 
both enter the logarithm of 
per_yrs into the model as an 
offset.

. *Statistics > Postestimation > Linear combinations of estimates

. lincom male,irr       {3}

( 1)  [chd]male = 0.0
------------------------------------------------------------------------------

chd |       IRR   Std. Err.       z     P>|z|       [95% Conf. Interval]
---------+--------------------------------------------------------------------

(1) |   1.832227   .0961444     11.54   0.000       1.653154    2.030698
--------------------------------------------------------------------------------------------------------------------------------------------

N.B. The or option of the lincom command really means
“calculate ” rather than “calculate an odds ratio” The label
odds ratio in the output would be incorrect, since in Poisson
regression estimates a relative risk rather than an odds
ratio.

e


e


{3} The irr option has the same effect as the or option.  That is, it 
calculates    .  The only difference is that this statistic is labeled 
“IRR” rather than “Odds Ratio”.  IRR stands for incidence rate 
ratio, which is a synonym for relative risk.  The estimate of  is 
0.6055324.  Hence the relative risk of CHD for men compared to 
women is     = exp(0.6055324) = 1.832227. e



e

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. * Statistics > Epidemiology... > Tables... > Incidence-rate ratio calculator

. iri 823 650 42259 61451
|   Exposed   Unexposed  |      Total

-----------------+------------------------+------------
Cases |       823         650  |       1473

Person-time |     42259       61451  |     103710
-----------------+------------------------+------------

|                        |
Incidence rate |  .0194751    .0105775  |   .0142031

|                        |
|      Point estimate    |    [95% Conf. Interval]
|------------------------+------------------------

Inc. rate diff. |         .0088976       |    .0073383     .010457 
Inc. rate ratio |          1.84118       |    1.659204    2.043774 (exact)
Attr. frac. ex. |           .45687       |    .3973015     .510709 (exact)
Attr. frac. pop |         .2552641       |

+-------------------------------------------------
(midp)   Pr(k>=823) =                   0.0000 (exact)
(midp) 2*Pr(k>=823) =                   0.0000 (exact)
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c)   95% confidence intervals for relative risk estimates

has an asymptotically normal distribution which allows us to 
estimate the 95% CI for  to be

.6104111 + 1.96x0.05247 = (0.5075, 0.7132). 



d)   Comparison of classical and Poisson risk estimates

The classical and Poisson relative risk estimates are in exact 
agreement. 

The classical and Poisson 95% confidence intervals for this relative 
risk agree to three significant figures.

The 95% CI for the relative risk R = 1.832 is 

(exp(0.5075), exp(0.7132)) = (1.661, 2.041).

------------------------------------------------------------------------------
|                 OIM

chdfate |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

male |   .6104111   .0524741    11.63   0.000     .5075638    .7132584
_cons |  -4.549026   .0392232  -115.98   0.000    -4.625902    -4.47215

per_yrs | (exposure)
------------------------------------------------------------------------------

Testing the null hypothesis that R = 1 is equivalent to testing the null 
hypothesis that  = 0.  

The P value associated with this test is < 0.0005. 

. lincom male,irr       

( 1)  [chdfate]male = 0

------------------------------------------------------------------------------
chdfate |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) |   1.841188   .0966146    11.63   0.000     1.661239     2.04063

------------------------------------------------------------------------------
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7. Assumptions needed for Poisson Regression

The distribution of di will be well approximated by a Poisson 
distribution if the following is true 

a)   Low death rates

The proportion of patients who die in each risk group should 
be small.

b)   Independent events

Deaths in different patients are independent events.

The denominators of rates used in Poisson regressions is often 
patient-years rather than patients.  Strictly speaking, deaths 
used in these rates are not independent since we can only die 
once.  However, the independence assumption is not badly 
violated as long as the number of patients is large relative to 
the maximum number of years of follow-up per patient, and di
is small.

8. Poisson Regression and Survival Analysis

For large data sets Poisson regression is much faster than hazard 
regression analysis with time dependent covariates.  If we have reason 
to believe that the proportional hazards assumption is false, it makes 
sense to do our exploratory analyses using Poisson regression.  Before 
we can do this we must first convert the data from survival format to 
person-year format.

a)   Recoding data on patients as patient-year data

Consider the following example:

Patient   
ID

Entry    
Age

Exit     
Age

Treatment Fate

A 1 4 1 Alive
B 3 5 1 Dead
C 3 6 2 Alive
D 2 3 2 Dead
E 1 3 2 Dead

This data can be represented graphically as follows:
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   0               0                    1              0

   1               1                    1              0

   2               0                    1              0

   2               0                    3              2

   1               0                    2              0

   1               0                    1              0

We need to convert the 5 patient records into 11 
records of patient-years of follow-up.

9. Converting Survival Records to Person-Years of   
Follow-up.  

The following program may be used as a template to convert 
survival records on individual patients into records giving person-
years of follow-up.

. * 8.8.2.Survival_to_Person-Years.log

. *

. *   Convert survival data to person-year data.

. *   The survival data set must have the following 

. *   variables

. *       id      =  patient id

. *       age_in  =  age at start of follow-up

. *       age_out =  age at end of follow-up

. *       fate    =  fate at exit: censored = 0, dead = 1

. *       treat   =  treatment variable.

. *

. *   The person-year data set created below will

. *   contain one record per unique combination of 

. *   treatment and age.

. *
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. *   Variables in the person-year data set that must not 

. *   be in the original survival data set are

. *       age_now = an age of people in the cohort

. *       pt_yrs  = number of patient-years of observations 

. *                 of people receiving therapy treat who

. *                 are age_now years old.

. *       deaths  = number of events (fate=1) occurring in 

. *                 pt_yrs years of follow-up for this 

. *                 group of patients.

. *

. use C:\WDDtext\8.8.2.Survival.dta, clear

. * Data > Describe data > List data

. list

id    age_in   age_out     treat      fate 

1.         A         1         4         1         0  
2.         B         3         5         1         1  
3.         C         3         6         2         0  
4.         D         2         3         2         1  
5.         E         1         3         2         1 

. generate exit = age_out + 1 {1}

{1} A patient who is age_out years old at his end of follow-up
will be in his age_out plus 1st year of life at that time. We
define exit to be the patient’s year of life at the end of follow-
up.

. * Statistics > Survival... > Setup... > Declare data to be survival...

. stset exit, id(id) enter(time age_in) failure(fate)

id:  id
failure event:  fate != 0 & fate < .

obs. time interval:  (exit[_n-1], exit]
enter on or after:  time age_in
exit on or before:  failure

------------------------------------------------------------------------------
5  total obs.
0  exclusions

------------------------------------------------------------------------------
5  obs. remaining, representing
5  subjects
3  failures in single failure-per-subject data

13.5  total analysis time at risk, at risk from t =         0
earliest observed entry t =         1

last observed exit t =       6.5

. * Statistics > Survival... > Setup... > Split time-span records

. stsplit age_now, at(0(1)6) {2}
(11 observations (episodes) created)

{2} This command, in combination with the preceding stset
command expands the data set so that there is one record
for each patient-year of follow-up. The effects of this
command are illustrated by the following list command. See
also Handout 6, pages 60 – 61.
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. * Data > Describe data > List data

. list id age_in age_out treat fate exit age_now

+-------------------------------------------------------+
| id   age_in   age_out   treat   fate   exit   age_now |  {3,4}
|-------------------------------------------------------|

1. |  A        1         4       1      .      2         1 |
2. |  A        1         4       1      .      3         2 |
3. |  A        1         4       1      .      4         3 |
4. |  A        1         4       1      0      5         4 |
5. |  B        3         5       1      .      4         3 |

|-------------------------------------------------------|
6. |  B        3         5       1      .      5         4 |
7. |  B        3         5       1      1      6         5 |
8. |  C        3         6       2      .      4         3 |
9. |  C        3         6       2      .      5         4 |
10. |  C        3         6       2      .      6         5 |

|-------------------------------------------------------|
11. |  C        3         6       2      0      7         6 |
12. |  D        2         3       2      .      3         2 |
13. |  D        2         3       2      1      4         3 |
14. |  E        1         3       2      .      2         1 |
15. |  E        1         3       2      .      3         2 |

|-------------------------------------------------------|
16. |  E        1         3       2      1      4         3 |

+-------------------------------------------------------+

stset exit, id(id) enter(time age_in) failure(fate)
stsplit age_now, at(0(1)6)

{4} fate is the patient’s true fate in his last record and is missing
for other records. stsplit divides the observed follow-up into
one year epochs with one record per epoch. Each epoch
starts at age_now and ends at exit; fate gives the patient’s
fate at the end of the epoch.

{3} There is now one record for each year of life that each
patient had complete or partial follow-up. age_now equals
age_in in each patient’s first record and is incremented
sequentially in subsequent records. It equals age_out at the
last record.
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. sort treat age_now

. * Data > Create... > Other variable-trans... > Make dataset of means...

. collapse (count) pt_yrs=age_in (sum) deaths=fate, by(treat age_now)   {5}

{5} This statement collapses all records with identical values of treat
and age_now into a single record.  pt_yrs is set equal to the number 
of records collapsed.  (More precisely, it is the count of collapsed 
records with non-missing values of age_in.) 

deaths is set equal to the number of deaths (the sum of non-missing 
values of fate over these records).   All variables are deleted from 
memory except treat age_now pt_yrs and deaths. 
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. * Data > Describe data > List data

. list treat age_now pt_yrs deaths

+-----------------------------------+
| treat   age_now   pt_yrs   deaths |
|-----------------------------------|

1. |     1         1        1        0 |
2. |     1         2        1        0 |
3. |     1         3        2        0 |
4. |     1         4        2        0 |
5. |     1         5        1        1 |

|-----------------------------------|
6. |     2         1        1        0 |
7. |     2         2        2        0 |
8. |     2         3        3        2 |
9. |     2         4        1        0 |
10. |     2         5        1        0 |

|-----------------------------------|
11. |     2         6        1        0 |

+-----------------------------------+

. save 8.8.2.Person-Years.dta, replace
file 8.8.2.Person-Years.dta saved
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N.B.

a) If you are working on a large data set with many covariates you can 
reduce the computing time by only keeping the covariates that you 
will need in your model(s) before you start to convert to patient-
year data.

b) It is a good idea to check that you have not changed the number of 
deaths or number of years of follow-up in your program.  See the 
8.9.Framingham.log file in the next section for an example of how 
this can be done. 

10.     Converting the Framingham Survival Data to Person-
time Data

The following log file shows how the Framingham Heart Study survival
data set may be converted to a person-time data set that is suitable for
Poisson regression analysis.

. * 8.9.Framingham.log

. *

. use C:\WDDtext\2.20.Framingham.dta, clear

. *

. *  Convert bmi, scl and dbp into categorical variables 

. *  that subdivide the data set into quartiles for each 

. *  of these variables.

. *

. * Statistics > Summaries... > Summary and ... > Centiles with CIs

. centile bmi dbp scl, centile(25,50,75) {2}

{2} In the next chapter we will consider body mass index, serum
cholesterol, and diastolic blood pressure as confounding
variables in our analyses.  We convert these data into categorical
variables grouped by quartiles.  This centile statement gives the 25th, 
50th, and 75th quartile for bmi, dbp and scl.  These are then used as 
arguments in the recode function to define categorical variables 
bmi_gr, dbp_gr and scl_gr.
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-- Binom. Interp. --
Variable | Obs  Percentile    Centile        [95% Conf. Interval]
---------+-----------------------------------------------------------

bmi | 4690         25       22.8            22.7          23
|              50       25.2            25.1    25.36161
|              75         28            27.9        28.1

dbp | 4699         25         74              74          74
|              50         80              80          82
|              75         90              90          90

scl | 4666         25        197             196         199
|              50        225             222         225
|              75        255             252         256

. generate bmi_gr = recode(bmi, 22.8, 25.2, 28, 29)
(9 missing values generated)

. generate dbp_gr = recode(dbp, 74,80,90,91)

. generate scl_gr = recode(scl, 197,225,255,256)
(33 missing values generated)
. *
. *  Calculate years of follow-up for each patient.
. *  Round to nearest year for censored patients.
. *  Round up to next year when patients exit with CHD
. *
. generate years=int(followup/365.25)+1 if chdfate {3}
(3226 missing values generated)

. replace years=round(followup/365.25, 1) if ~chdfate {4}
(3226 real changes made)

{3} The last follow-up interval for most patients is a fraction of a year.  
If the patient’s follow-up was terminated because of a CHD event, 
we include the patient’s entire last year as part of her follow-up.  
The int function facilitates this by truncating follow-up in years to 
the largest whole integer less than than followup/365.25.  We then 
add 1 to this number to include the entire last year of follow-up.

{4} If the patient is censored at the end of follow-up we round
this number to the nearest integer using the round function.  
round(x,1) rounds x to the nearest integer.
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. * Statistics > Summaries... > Tables > Table of summary statistics (table).

. table sex dbp_gr, contents(sum years) row col {5}

----------+---------------------------------------
|                dbp_gr                

Sex |     74      80      90      91   Total
----------+---------------------------------------

Men |  10663   10405   12795    8825   42688 {6}
Women |  21176   14680   15348   10569   61773

| 
Total |  31839   25085   28143   19394  104461

----------+---------------------------------------

{5} So far, we haven’t added any records or modified any of the original 
variables.  Before doing this it is a good idea to tabulate the number of 
person-years of follow-up and CHD events in the data set.  At the end of 
the transformation we can recalculate these tables to ensure that we have 
not lost or added any spurious years of follow-up or CHD events.

The next two tables show these data cross tabulated by sex and dbp_gr.  The 
contents(sum years) option causes years to be summed over every unique
combination of values of sex and dbp_gr and displayed in the table.  

{6} For example, the sum of the years variable for men with dbp_gr = 90 is 
12,795.  This means that there are 12,795 person-years of follow-up for men 
with baseline diastolic blood pressures between 80 and 90.
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. * Statistics > Summaries... > Tables > Table of summary statistics (table).

. table sex dbp_gr, contents(sum chdfate) row col {7}

----------+----------------------------------
|              dbp_gr             

Sex |    74     80     90     91  Total
----------+----------------------------------

Men |   161    194    222    246    823
Women |   128    136    182    204    650

| 
Total |   289    330    404    450   1473

----------+----------------------------------

{7} This table shows the corresponding number of CHD events.

. generate age_in = age

. generate exit = age + years 

. summarize age_in exit

Variable |       Obs        Mean    Std. Dev.       Min        Max
-------------+--------------------------------------------------------

age_in |      4699    46.04107    8.504363         30         68
exit |      4699    68.27155    10.09031         36         94

. *

. *  Transform data set so that there is one record per patient-year of 

. *  follow-up.  Define age_now to be the patient's age in each record

. *

. * Statistics > Survival... > Setup... > Declare data to be survival...

. stset exit, id(id) enter(time age_in) failure(chdfate)

id:  id
failure event:  chdfate != 0 & chdfate < .

obs. time interval:  (exit[_n-1], exit]
enter on or after:  time age_in
exit on or before:  failure

{Output omitted}

. * Statistics > Survival... > Setup... > Split time-span records

. stsplit age_now, at(30(1)94)
(99762 observations (episodes) created)
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{8} The expansion of the data set by the stset and stsplit 
commands, and the definitions of age_now, and exit are done in 
the same way as in 8.8.2.Survival_to_Person-Years.log.  This list
command shows the effects of these transformations.  Note that 
patient 4182 entered the study at age 41 and exits at age 43 in 
his 44th year of life.  The expanded data set contains one record 
for each of these years.  

. * Data > Describe data > List data

. list id age_in years exit age_now  in 278/282 {8}

+----------------------------------------+
|   id   age_in   years   exit   age_now |
|----------------------------------------|

278. | 4075       59       3     62        61 |
279. | 4182       41       3     42        41 |
280. | 4182       41       3     43        42 |
281. | 4182       41       3     44        43 |
282. | 1730       46       3     47        46 |

+----------------------------------------+

. generate age_gr = recode(age_now, 45,50,55,60,65,70,75,80,81) {9}

. label define age 45 "<= 45" 50 "45-50" 55 "50-55" 60 "55-60" 65 ///
>     "60-65" 70 "65-70" 75 "70-75" 80 "75-80" 81 "> 80"

. label values age_gr age

. sort sex bmi_gr scl_gr dbp_gr age_gr

. *

. *  Combine records with identical values of 

. *  sex bmi_gr scl_gr dbp_gr and age_gr.

. *

. * Data > Create... > Other variable-trans... > Make dataset of means...

. collapse (count) pt_yrs=age_in (sum) chd_cnt=chdfate {10}
>     , by(sex bmi_gr scl_gr dbp_gr age_gr)
. * Data > Describe data > List data
. list sex bmi_gr scl_gr dbp_gr age_gr pt_yrs chd_cnt in 310/315
>     , nodisplay

+------------------------------------------------------------+
| sex   bmi_gr   scl_gr   dbp_gr   age_gr   pt_yrs   chd_cnt |
|------------------------------------------------------------|

310. | Men       28      197       90    45-50      124         0 |
311. | Men       28      197       90    50-55      150         1 |
312. | Men       28      197       90    55-60      158         2 |
313. | Men       28      197       90    60-65      161         4 | {11}
314. | Men       28      197       90    65-70      100         2 |

|------------------------------------------------------------|
315. | Men       28      197       90    70-75       55         1 |

+------------------------------------------------------------+
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{10} Collapse records with identical values of sex, bmi_gr, scl_gr, dbp_gr
and age_gr.  pt_yrs records the number of patient-years of follow-
up associated with each record while chd_cnt records the 
corresponding number of CHD events.  

{11} For example, the subsequent listing shows that there were 161 
patient-years of follow-up in men 

aged 60 to 65 with
body mass indexes between 25.2 and 28,
serum cholesterols less than or equal to 197, and
diastolic blood pressures between 80 and 90 on their baseline
exams.  

Four CHD events occurred in these patients during these years of 
follow-up. 

{9} Recode age_now into 5-year age groups.

. * Statistics > Summaries... > Tables > Table of summary statistics (table).

. table sex dbp_gr, contents(sum pt_yrs) row col {12}
----------+---------------------------------------

|                dbp_gr                
Sex |     74      80      90      91   Total

----------+---------------------------------------
Men |  10663   10405   12795    8825   42688

Women |  21176   14680   15348   10569   61773
| 

Total |  31839   25085   28143   19394  104461
----------+---------------------------------------

. table sex dbp_gr, contents(sum chd_cnt) row col {13}
----------+----------------------------------

|              dbp_gr             
Sex |    74     80     90     91  Total

----------+----------------------------------
Men |   161    194    222    246    823

Women |   128    136    182    204    650
| 

Total |   289    330    404    450   1473
----------+----------------------------------
. generate male = sex == 1

. display _N
1267

. save 8.12.Framingham.dta, replace {14}
(note: file 8.12.Framingham.dta not found)
file 8.12.Framingham.dta saved
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{12} This table shows total person-years of follow-up cross-tabulated
by sex and dbp_gr. Note that this table is identical to the one
produced before the data transformation

----------+---------------------------------------
|                dbp_gr                

Sex |     74      80      90      91   Total
----------+---------------------------------------

Men |  10663   10405   12795    8825   42688
Women |  21176   14680   15348   10569   61773

| 
Total |  31839   25085   28143   19394  104461

----------+---------------------------------------

{13} This table shows CHD events of follow-up cross-tabulated by sex
and dbp_gr. This table is also identical to its pre-transformation
version and supports the hypothesis that we have successfully
transformed the data in the way we intended.

{14} The person-year data set is stored away for future analysis.

N.B. It is very important that you specify a new
name for the transformed data set.  If you use the 
original name you will loose the original data set.  
It is also a very good idea to always keep back-up
copies of your original data sets in case you 
accidentally destroy the copy that you are working 
with. 
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11.     What we have covered

 Elementary statistics involving rates

 Classical methods for deriving 95% confidence intervals for relative 
risks :  the iri command

 Relationship between the binomial and Poisson distributions
 Poisson regression and 2x2 contingency tables: the glm command
 Estimating relative risks from Poisson regression models

 Poisson regression is an example of a generalized linear model

 Poisson Regression and survival analysis

 Incidence and relative risk

 Offsets in Poisson regression models:  the lnoffset option

 Assumptions of the Poisson regression model
 Contrast between logistic and Poisson regression
 95% confidence intervals for relative risk estimates

 Converting survival records to person-year records with Stata
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