PH 538: Biostatistical Methods I

SAS: Lab 1 (Descriptive Statistics)

Dr. Fares Qeadan: fqeadan@salud.unm.edu

Objectives:

In this lab students will learn how to use SAS to describe numerical (quantitative) and categorical (qualitative) variables both numerically and graphically.

Background on the data set:

In this Lab, we will be using the *Diabetes and obesity, cardiovascular risk factors* data set. This data set includes 403 African Americans who were interviewed in a study to understand the prevalence of obesity, diabetes, and other cardiovascular risk factors in central Virginia.

|--|

	Variable	Description		
1	id	Subject ID		
2	chol Total Cholesterol			
3	stab_glu	Stabilized Glucose		
4	hdl	High Density Lipoprotein		
5	ratio	Cholesterol/HDL Ratio		
6	5 glyhb Glycosylated Hemoglobin (A1C)			
7	location	County - a factor with levels Buckingham and Louisa		
8	age	age in years		
9	gender a factor with levels male and female			
10	height	height in inches		
11	weight	weight in pounds		
12	frame	a factor with levels small, medium and large		
13	bp_1s	First Systolic Blood Pressure		
14	bp_1d	First Diastolic Blood Pressure		
15	waist waist in inches			
16	hip	hip in inches		
17	diab	Diabetes status		

Things to do before starting the analysis of the data

1. <u>Create a SAS Permanent Library:</u>

SAS has permanent libraries and one temporary library (the Work library). To create a SAS library, please use the following steps:

a) Firstly, click the button at the top that looks like ¹⁰ and then proceed to step (b)

sas sa	S											
File	Edit	View	Tools	Run	Solutions Window	Help					\wedge	
~					~ D	🖻 📕	9	🚨 🐰	Þa 🛍	ŝ	🐌 🔍 🗦 🗶 🛈	۲

b) Give a name for your new permanent library (e.g. BIOM505), check the box "Enable at startup", and use "Browse" to specify the path for the folder in which all SAS datasets will be stored (note that the name of the specified folder and that of the library don't necessarily have to be the same).

(No				-		
New Li	brary					
Library —						
Name:	BIOM505	Engine:	Default	~	🗹 Enable at startur	2
Library Info	mation					
Daths	[-
Path:	C:\Users\Admin\	Documents\Bl	OM505		Browse	
Options:						
1						
				OK	Canad	
						P

c) Click "OK" on the above New Library Window. To verify that BIOM505 was created, you should see the following on the Explore (Active Libraries) Tab:

d) Assuming that you have downloaded the *Diabetes and obesity, cardiovascular risk factors* data set into the specified folder in 1 (b) from the class website at:

<u>http://www.mathalpha.com/lab1/diabetesfall17.sas7bdat</u>, then if you double click on the newly created library BIOM505 you should be able to see the **diabetesfall17.sas7bdat** dataset:

2. Create a SAS program:

To reuse your work, you need to save your SAS syntax into a file. SAS uses program files for this purpose where SAS programs are simply text files whose names end with .sas. There are several ways to create a SAS program as follows:

a) Use the SAS Editor available when you open SAS:

To SAVE your SAS program (call it Lab1) in a desired folder, Click on **H** or from the drop-down menu, click on **File** and then select **save as** to save your file under any name and location you like, say **lab1** and save it at the BIOM505 folder in your computer.

b) A second way to create a new SAS program is to firstly, click the File drop-down menu and click on New Program and then repeat 2(a).

Your first SAS program will involve using data-step programing. Specifically, we need to use **data** and **set** to make a copy of the **diabetesfall17.sas7bdat** dataset from the **BIOM505 library** into the **Work library**:

🛃 lab1
🗆 data diabetes;
<pre>set biom505.diabetesfall17;</pre>
run;

Data Analysis

Before initiating any descriptive statistics, let's identify the variable names in the dataset and their type by using **proc contents**. To save the contents of the dataset, we could use the SAS Output Delivery System (ODS):

```
ods rtf;
proc contents data=diabetes;
run;
ods rtf close;
```

The output that you should be getting is:

The SAS System

The CONTENTS Procedure

Data Set Name	WORK.DIABETES	Observations	403
Member Type	DATA	Variables	17
Engine	V9	Indexes	0
Created	09/19/2017 00:55:42	Observation Length	136
Last Modified	09/19/2017 00:55:42	Deleted Observations	0
Protection		Compressed	NO
Data Set Type		Sorted	NO
Label			
Data Representation	WINDOWS_64		
Encoding	wlatin1 Western (Windows)		

Engine/Host Dependent Information						
Data Set Page Size	65536					
Number of Data Set Pages	1					
First Data Page	1					
Max Obs per Page	481					
Obs in First Data Page	403					
Number of Data Set Repairs	0					
ExtendObsCounter	YES					
Filename	C:\Users\Admin\AppData\Local\Temp\SAS Temporary Files_TD2644_LENOVO-NOTEBOOK_\diabetes.sas7bdat					
Release Created	9.0401M4					
Host Created	X64_10HOME					
Owner Name	BUILTIN\Administrators					
File Size	128KB					
File Size (bytes)	131072					

	Alphabetic List of Variables and Attributes								
#	Variable	Туре	Len	Format	Informat	Label			
8	age	Num	8			age			
14	bp_1d	Num	8			bp_1d			
13	bp_1s	Num	8			bp_1s			
2	chol	Num	8			chol			
17	diab	Num	8			diab			
12	frame	Char	6	\$6.	\$6.	frame			
9	gender	Char	6	\$6 .	\$6.	gender			
6	glyhb	Num	8			glyhb			
4	hdl	Num	8			hdl			
10	height	Num	8			height			
16	hip	Num	8			hip			
1	id	Num	8			id			
7	location	Char	10	\$10.	\$10.	location			
5	ratio	Num	8			ratio			
3	stab_glu	Num	8			stab_glu			
15	waist	Num	8			waist			
11	weight	Num	8			weight			

1. Numerical Descriptive Statistics for Numerical (Quantitative) Variables:

We will describe the Glycosylated Hemoglobin (A1C) variable [and other variables] numerically by providing the following sample statistics:

n, Mean, Median, Mode, Standard deviation (or Variance), Q1, Q3, IQR, Min, Max, Range, Mode

To accomplish this task, we use either PROC MEANS, PROC SUMMARY, or PROC UNIVARIATE

PROC MEANS:

proc means data=diabetes n Mean Median Mode Std var Q1 Q3 Min Max Range Mode skew kurt p25 p75 grange; var glyhb;

run;

	The SAS System														
	The MEANS Procedure														
Analysis Variable : glyhb glyhb															
N	Mean	Median	Mode	Std Dev	Variance	Lower Quartile	Upper Quartile	Minimum	Maximum	Range	Skewness	Kurtosis	25th Pctl	75th Pctl	Quartile Range
390	5.5897692	4.8400000	4.4000000	2.2425948	5.0292316	4.3800000	5.6000000	2.6800000	16.1100000	13.4300000	2.2461247	5.1064863	4.3800000	5.6000000	1.2200000

PROC UNIVARIATE:

proc univariate	<pre>data=diabetes;</pre>
var glyhb;	
run:	

The SAS System

The UNIVARIATE Procedure Variable: glyhb (glyhb)

Moments								
Ν	390	Sum Weights	390					
Mean	5.58976923	Sum Observations	2180.01					
Std Deviation	2.24259483	Variance	5.02923157					
Skewness	2.24612468	Kurtosis	5.10648627					
Uncorrected SS	14142.1239	Corrected SS	1956.37108					
Coeff Variation	40.1196317	Std Error Mean	0.1135582					

Basic Statistical Measures								
Location Variability								
Mean 5.589769		Std Deviation	2.24259					
Median	4.840000	Variance	5.02923					
Mode	4.400000	Range	13.43000					
		Interquartile Range	1.22000					

Note: The mode displayed is the smallest of 2 modes with a count of 6.

Tests for Location: Mu0=0							
Test	t Statistic p Val		ic p Value				
Student's t	t	49.22383	Pr > t	<.0001			
Sign	М	195	Pr >= M	<.0001			
Signed Rank	s	38122.5	Pr >= S	<.0001			

Quantiles (Definition 5)					
Level	Quantile				
100% Max	16.11				
99%	14.31				
95%	10.93				
90%	8.99				
75% Q3	5.60				
50% Median	4.84				
25% Q1	4.38				
10%	4.00				
5%	3.75				
1%	2.85				
0% Min	2.68				

Extre	me O	bservati	ons	
Low	est	Highest		
Value	Obs	Value	Obs	
2.68	37	13.70	59	
2.73	337	14.31	63	
2.85	321	14.94	363	
2.85	305	15.52	33	
3.03	308	16.11	399	

	Miss	ing Value	es			
Missing		Percent Of				
Value	Count	All Obs	Missing Obs			
	13	3.23	100.00			

PROC SUMMARY:

proc summary data=diabetes print n Mean Median Mode Std var Ql Q3 Min Max Range Mode skew kurt p25 p75 grange; var glyhb; run;

	The SAS System														
	The SUMMARY Procedure														
Analysis Variable : glyhb glyhb															
N	Mean	Median	Mode	Std Dev	Variance	Lower Quartile	Upper Quartile	Minimum	Maximum	Range	Skewness	Kurtosis	25th Pctl	75th Pctl	Quartile Range
390	5.5897692	4.8400000	4.4000000	2.2425948	5.0292316	4.3800000	5.6000000	2.6800000	16.1100000	13.4300000	2.2461247	5.1064863	4.3800000	5.6000000	1.2200000

Remark: One could describe more than one variable at a time as follows:

```
proc means data=diabetes;
var glyhb hip stab_glu chol hdl;
run;
```

The SAS System

The MEANS Procedure

Variable	Label	Ν	Mean	Std Dev	Minimum	Maximum
glyhb	glyhb	390	5.5897692	2.2425948	2.6800000	16.1100000
nip stab_glu	nip stab_glu	401	106.6724566	53.0766545	48.0000000	385.0000000
chol hdl	chol hdl	402 402	207.8457711 50 4452736	44.4455574 17.2626257	78.0000000 12.0000000	443.0000000 120.0000000

<u>Remark</u>: One could also describe numerical variables within the levels of categorical variables as follows:

```
proc means data=diabetes;
class frame;
var glyhb;
run;
```

The SAS System

The MEANS Procedure

	Analysis Variable : glyhb glyhb									
frame	N Obs	Ν	Mean	Std Dev	Minimum	Maximum				
large	103	99	6.1056566	2.2455353	3.5800000	13.7000000				
medium	184	178	5.6402809	2.4381130	2.6800000	16.1100000				
small	104	102	5.0408824	1.8023824	2.8500000	13.6300000				

2. Graphical Descriptive Statistics for Numerical (Quantitative) Variables:

We will describe the Glycosylated Hemoglobin (A1C) variable [and other variables] graphically by providing the following presentations:

Histogram, Box-plot, Stem and leaf and Scatter plot.

```
proc sgplot data=diabetes;
histogram glyhb;
density glyhb;
density glyhb / type=kernel;
keylegend / location=inside position=topright;
Title "The Distribution of Glycosylated Hemoglobin";
xaxis label="AlC";
refline 7 /axis=x label=" AlC is higher than 7.0" lineattrs=(color=green);
run;
```



```
proc sgplot data=diabetes;
vbox glyhb;
*hbox glyhb;
run;
```


proc sgplot data=diabetes; *vbox glyhb; hbox glyhb; run;


```
proc sgplot data=diabetes;
vbox glyhb/group=gender;
run;
```



```
ods graphics off;

ods select Plots SSPlots;

proc univariate data=diabetes plot;

var glyhb;

run;
```

Stem and Leaf Plot

The UNIVARIATE Procedure Variable: glyhb (glyhb)

Histogram	#	Boxplot
16.5+*	1	*
.*	1	*
.*	2	*
.*	4	*
.**	5	*
. **	5	*
.***	10	*
9.5+***	11	0
.**	8	0
****	13	0
*****	23	
· ************************************	83	+++
. * * * * * * * * * * * * * * * * * * *	185	**
******	35	1
2.5+*	4	
+++++++++++++++++++++		
* may represent up to 4 counts		

```
data diabetes;
set diabetes;
stem=floor(glyhb);
leaf=floor((glyhb-stem)*10);
run;
proc sort data=diabetes out=stemleafSort;
by glyhb;
run;
data stemleafGraph;
  set stemleafSort;
 by stem;
  zero=0;
  retain x 0;
    if first.stem then x=0;
    else x+1;
run;
ods graphics on / width=11in height=6in;
title 'Stem and Leaf Plot';
proc sgplot data=stemleafGraph noautolegend noborder;
  text x=x y=stem text=leaf / textattrs=(size=9) strip;
  yaxis reverse;
```

```
run;
```

		Stem and Leaf Plot
		6788
		03445555556666777777888888999999999
		000000000001111111111111222222222222222
	5 -	0000000000111111111111122222222222233333333
		0111112333344444457999
		1244456557789
		01224458
stem		11223366778
	10 -	0011457999
		12445
		01679
		0667
		39
	15 -	5
		1
		0 50 100 150
		x

3. <u>Numerical Descriptive Statistics for Categorical (Qualitative) Variables:</u>

We will describe the Diabetes status variable [and other variables] numerically by providing the frequencies and relative frequencies through contingency tables:

```
proc freq data=diabetes;
table diab;
run;
```

	The FREQ Procedure							
	diab							
diab	Frequency	Percent	Cumulative Frequency	Cumulative Percent				
0	330	84.62	330	84.62				
1	60	15.38	390	100.00				
	Frequency Missing = 13							

Note that we could also find the sample proportion of diabetes by gender as follows:

```
proc freq data=diabetes;
table gender*diab/chisq;
run;
```

Frequency	Table of gender by diab							
Percent Row Pct		d	liab(dia	ıb)				
Col Pct	gender(gender)	0	1	Total				
	female	194	34	228				
		49.74	8.72	58.46				
		85.09	14.91					
		58.79	56.67					
	male	136	26	162				
		34.87	6.67	41.54				
		83.95	16.05					
		41.21	43.33					
	Total	330	60	390				
		84.62	15.38	100.00				
	Frequency Missing = 13							

The FREQ Procedure

Statistics for Table of gender by diab

Statistic	DF	Value	Prob
Chi-Square	1	0.0941	0.7591
Likelihood Ratio Chi-Square	1	0.0938	0.7594
Continuity Adj. Chi-Square	1	0.0270	0.8695
Mantel-Haenszel Chi-Square	1	0.0938	0.7594
Phi Coefficient		0.0155	
Contingency Coefficient		0.0155	
Cramer's V		0.0155	

How to read the Table on the left?

Here is a correct statement: 14.91% of females were found to have diabetes

Here is a correct statement: 56.67% of subjects with diabetes were females.

Remark: Note that there are three different percentages one could obtain, the total one, the row one and the column one and each one of them has a different denominator and hence different interpretation.

4. Graphical Descriptive Statistics for Categorical (Qualitative) Variables:

We will describe the Diabetes status variable [and other variables] graphically by providing the pie and bar charts:


```
title "The distribution of Body Frame";
ods graphics on;
proc freq data=diabetes;
tables frame / plots=FreqPlot(scale=Percent) out=FreqlOut; /* save Percent variable */
run;
```


proc sgplot data=freqlout; vbar frame/response=percent datalabel; run;

Data Management:

1. Please create a BMI variable from the given weight and height variables?

```
data diabetes;
set diabetes;
BMI=(weight/(height*height))* 703;
RUN;
```

- 2. Please create a BMI categorical variable from the BMI numeric one? Note that, in public health, BMI for adults is often divided into four categories:
 - 1. Underweight if BMI<18.5
 - 2. normal weight if BMI is within [18.5, 25)
 - 3. overweight if BMI is within [25, 30)
 - 4. obese if $BMI \ge 30$

```
data diabetes;
set diabetes;
if bmi<18.5 & age>=18 then BMI_cat=1;
if bmi>=18.5 & bmi<25 & age>=18 then BMI_cat=2;
if bmi>=25 & bmi<30 & age>=18 then BMI_cat=3;
if bmi>=30 & age>=18 then BMI_cat=4;
if bmi=. then BMI_cat=.;
run;
```

```
data diabetes;
set diabetes;
if bmi lt 18.5 and age ge 18 then BMI_cat=1;
if bmi ge 18.5 and bmi lt 25 and age ge 18 then BMI_cat=2;
if bmi ge 25 and bmi lt 30 and age ge 18 then BMI_cat=3;
if bmi ge 30 and age ge 18 then BMI_cat=4;
if bmi=. then BMI_cat=.;
run;
```

3. Get the contingency table for BMI categories and cross tab it with diabetes status?

```
proc freq data=diabetes;
table BMI_cat;
format bmi_cat bmi.;
run;
```

The	FREQ	Proced	ure
-----	------	--------	-----

BMI_cat	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
Underweight	9	2.27	9	2.27	
Normal weight	113	28.46	122	30.73	
Overweight	123	30.98	245	61.71	
Obese	152	38.29	397	100.00	
Frequency Missing = 6					

```
proc freq data=diabetes;
table BMI_cat*diab/chisq;
format bmi_cat bmi. diab diab.;
run;
```

Frequency Percent Row Pct Col Pct	Table of BMI_cat by diab				
		dia	diab(diab)		
	BMI_cat	No Diabetes	Diabetic	Total	
	Underweight	9	0	9	
		2.34	0.00	2.34	
		100.00	0.00		
		2.76	0.00		
	Normal weight	100	9	109	
		26.04	2.34	28.39	
		91.74	8.26		
		30.67	15.52		
	Overweight	99	20	119	
		25.78	5.21	30.99	
		83.19	16.81		
		30.37	34.48		
	Obese	118	29	147	
		30.73	7.55	38.28	
		80.27	19.73		
		36.20	50.00		
	Total	326	58	384	
		84.90	15.10	100.00	
	Frequency Missing = 19				

The FREQ Procedure

Statistics for Table of BMI_cat by diab

Statistic		Value	Prob
Chi-Square	3	8.3066	0.0401
Likelihood Ratio Chi-Square	3	10.1244	0.0175
Mantel-Haenszel Chi-Square	1	7.7070	0.0055
Phi Coefficient		0.1471	
Contingency Coefficient		0.1455	
Cramer's V		0.1471	

Effective Sample Size = 384 Frequency Missing = 19